메뉴 건너뛰기




Volumn 12, Issue 3, 2012, Pages 1115-1124

Constructing gene regulatory networks from microarray data using GA/PSO with DTW

Author keywords

Dynamic time warping; Gene regulatory networks; Genetic algorithms; Microarray data analysis; Particle swarm optimization

Indexed keywords

CORRELATION COEFFICIENT; DYNAMIC TIME WARPING; DYNAMIC TIME WARPING ALGORITHMS; GENE REGULATORY NETWORKS; HYBRID METHOD; MICROARRAY DATA; MICROARRAY DATA ANALYSIS; MICROARRAY DATA SETS; MICROARRAY DATASET; PARTICLE SWARM; SENSITIVITY AND SPECIFICITY; SUBNETWORKS;

EID: 84856013796     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2011.11.013     Document Type: Article
Times cited : (26)

References (30)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • M. Schena, D. Shalon, R.W. Davis, and P.O. Brown Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 270 1995 467 470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 2
    • 77957901392 scopus 로고    scopus 로고
    • A novel hybrid feature selection method for microarray data analysis
    • C.-P. Lee, and Y. Leu A novel hybrid feature selection method for microarray data analysis Appl. Soft Comput. 11 2009 208 213
    • (2009) Appl. Soft Comput. , vol.11 , pp. 208-213
    • Lee, C.-P.1    Leu, Y.2
  • 3
    • 34249855141 scopus 로고    scopus 로고
    • MSVM-RFE: Extensions of SVM-RFE for multiclass gene selection on DNA microarray data
    • DOI 10.1093/bioinformatics/btm036
    • X. Zhou, and D.P. Tuck MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data Bioinformatics 23 2007 1106 1114 (Pubitemid 47050562)
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1106-1114
    • Zhou, X.1    Tuck, D.P.2
  • 4
    • 33846097712 scopus 로고    scopus 로고
    • Bayesian learning of sparse gene regulatory networks
    • DOI 10.1016/j.biosystems.2006.09.026, PII S030326470600178X, Papers presented at the Sixth International Workshop on Information Processing in Cells and Tissues, York, UK, 2005 IPCAT 2005
    • Z.S.H. Chan, L. Collins, and N. Kasabov Bayesian learning of sparse gene regulatory networks Biosystems 87 2007 299 306 (Pubitemid 46073383)
    • (2007) BioSystems , vol.87 , Issue.2-3 , pp. 299-306
    • Chan, Z.S.H.1    Collins, L.2    Kasabov, N.3
  • 5
    • 14644401169 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks from time-series microarray data
    • DOI 10.1016/j.physa.2004.11.032, PII S0378437104014827
    • S.P. Li, J.J. Tseng, and S.C. Wang Reconstructing gene regulatory networks from time-series microarray data Physica A 350 2005 63 69 (Pubitemid 40319715)
    • (2005) Physica A: Statistical Mechanics and its Applications , vol.350 , Issue.1 , pp. 63-69
    • Li, S.P.1    Tseng, J.J.2    Wang, S.C.3
  • 6
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • DOI 10.1093/bioinformatics/19.1.79
    • C. Creighton, and S. Hanash Mining gene expression databases for association rules Bioinformatics 19 2003 79 86 (Pubitemid 36150183)
    • (2003) Bioinformatics , vol.19 , Issue.1 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 7
    • 34250013587 scopus 로고    scopus 로고
    • Large-scale regulatory network analysis from microarray data: Modified Bayesian network learning and association rule mining
    • DOI 10.1016/j.dss.2006.02.002, PII S0167923606000248
    • Z. Huang, J. Li, H. Su, G.S. Watts, and H. Chen Large-scale regulatory network analysis from microarray data: modified Bayesian network learning and association rule mining Decis. Support Syst. 43 2007 1207 1225 (Pubitemid 47223458)
    • (2007) Decision Support Systems , vol.43 , Issue.4 , pp. 1207-1225
    • Huang, Z.1    Li, J.2    Su, H.3    Watts, G.S.4    Chen, H.5
  • 9
    • 24944468825 scopus 로고    scopus 로고
    • Gene network prediction from microarray data by association rule and dynamic Bayesian network
    • Computational Science and Its Applications - ICCSA 2005: International Conference, Proceedings
    • H.-C. Wang, and Y.-S. Lee Gene network prediction from microarray data by association rule and dynamic Bayesian network Lect. Notes Comput. Sci. 3482 2005 309 317 (Pubitemid 41313570)
    • (2005) Lecture Notes in Computer Science , vol.3482 , Issue.3 , pp. 309-317
    • Wang, H.-C.1    Lee, Y.-S.2
  • 11
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • DOI 10.1016/j.biosystems.2004.03.004, PII S0303264704000383
    • S. Kim, S. Imoto, and S. Miyano Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data Biosystems 75 2004 57 65 (Pubitemid 38887551)
    • (2004) BioSystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 12
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • S.Y. Kim, S. Imoto, and S. Miyano Inferring gene networks from time series microarray data using dynamic Bayesian networks Brief. Bioinform. 4 2003 228 235
    • (2003) Brief. Bioinform. , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 13
    • 27844517961 scopus 로고    scopus 로고
    • Model gene network by semi-fixed Bayesian network
    • DOI 10.1016/j.eswa.2005.09.044, PII S0957417405002381, Intelligent Bioinformatics Systems
    • T.-F. Liu, W.-K. Sung, and A. Mittal Model gene network by semi-fixed Bayesian network Expert Syst. Appl. 30 2006 42 49 (Pubitemid 41641818)
    • (2006) Expert Systems with Applications , vol.30 , Issue.1 , pp. 42-49
    • Liu, T.-F.1    Sung, W.-K.2    Mittal, A.3
  • 14
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • M. Zou, and S.D. Conzen A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data Bioinformatics 21 2005 71 79
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2
  • 15
    • 40849145571 scopus 로고    scopus 로고
    • Soft computing methods to predict gene regulatory networks: An integrative approach on time-series gene expression data
    • Z.S.H. Chan, I. Havukkala, V. Jain, Y. Hu, and N. Kasabov Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data Appl. Soft Comput. 8 2008 1189 1199
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1189-1199
    • Chan, Z.S.H.1    Havukkala, I.2    Jain, V.3    Hu, Y.4    Kasabov, N.5
  • 16
    • 4444303303 scopus 로고    scopus 로고
    • Adapting genetic regulatory models by genetic programming
    • DOI 10.1016/j.biosystems.2004.05.014, PII S0303264704000826
    • R. Eriksson, and B. Olsson Adapting genetic regulatory models by genetic programming Biosystems 76 2004 217 227 (Pubitemid 39207449)
    • (2004) BioSystems , vol.76 , Issue.1-3 , pp. 217-227
    • Eriksson, R.1    Olsson, B.2
  • 17
    • 77649274950 scopus 로고    scopus 로고
    • Stochastic models for inferring genetic regulation from microarray gene expression data
    • T. Tian Stochastic models for inferring genetic regulation from microarray gene expression data Biosystems 99 3 2010 192 200
    • (2010) Biosystems , vol.99 , Issue.3 , pp. 192-200
    • Tian, T.1
  • 18
    • 33846884998 scopus 로고    scopus 로고
    • Evolving fuzzy rules to model gene expression
    • DOI 10.1016/j.biosystems.2006.04.006, PII S0303264706000864
    • R. Linden, and A. Bhaya Evolving fuzzy rules to model gene expression Biosystems 88 2007 76 91 (Pubitemid 46217904)
    • (2007) BioSystems , vol.88 , Issue.1-2 , pp. 76-91
    • Linden, R.1    Bhaya, A.2
  • 19
    • 2442687038 scopus 로고    scopus 로고
    • A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks
    • M.S. Dasika, A. Gupta, C.D. Maranas, and J.D. Varner A mixed integer linear programming (MILP) framework for inferring time delay in gene regulatory networks Pac. Symp. Biocomput. 9 2004 474 485
    • (2004) Pac. Symp. Biocomput. , vol.9 , pp. 474-485
    • Dasika, M.S.1    Gupta, A.2    Maranas, C.D.3    Varner, J.D.4
  • 22
    • 78649514838 scopus 로고    scopus 로고
    • Dynamic time warping based static hand printed signature verification
    • R. Jayadevan, R.K. Satish, and M.P. Pradeep Dynamic time warping based static hand printed signature verification J. Pattern Recogn. Res. 4 2009 52 65
    • (2009) J. Pattern Recogn. Res. , vol.4 , pp. 52-65
    • Jayadevan, R.1    Satish, R.K.2    Pradeep, M.P.3
  • 25
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • DOI 10.1109/4235.985692, PII S1089778X02022099
    • M. Clerc, and J. Kennedy The particle swarm - explosion, stability, and convergence in a multidimensional complex space IEEE Trans. Evol. Comput. 6 2002 58 73 (Pubitemid 34404564)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 28
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and the yeast cell cycle
    • DOI 10.1016/S0955-0674(02)00391-5
    • B. Futcher Transcriptional regulatory networks and the yeast cell cycle Curr. Opin. Cell Biol. 14 2002 676 683 (Pubitemid 35449379)
    • (2002) Current Opinion in Cell Biology , vol.14 , Issue.6 , pp. 676-683
    • Futcher, B.1
  • 29
    • 45149130239 scopus 로고    scopus 로고
    • A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF
    • E.N. Manderson, M. Malleshaiah, and S.W. Michnick A novel genetic screen implicates Elm1 in the inactivation of the yeast transcription factor SBF PLoS One 3 2008 e1500
    • (2008) PLoS One , vol.3 , pp. 1500
    • Manderson, E.N.1    Malleshaiah, M.2    Michnick, S.W.3
  • 30
    • 0037756792 scopus 로고    scopus 로고
    • Context of multiubiquitin chain attachment influences the rate of Sic1 degradation
    • DOI 10.1016/S1097-2765(03)00221-1
    • M.D. Petroski, and R.J. Deshaies Context of multiubiquitin chain attachment influences the rate of Sic1 degradation Mol. Cell 11 2003 1435 1444 (Pubitemid 36776531)
    • (2003) Molecular Cell , vol.11 , Issue.6 , pp. 1435-1444
    • Petroski, M.D.1    Deshaies, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.