메뉴 건너뛰기




Volumn 350, Issue 1, 2005, Pages 63-69

Reconstructing gene regulatory networks from time-series microarray data

Author keywords

Bioinformatics; Genetic regulatory networks; Simulation

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; GENETIC ENGINEERING; OPTIMIZATION; PROBABILITY; YEAST;

EID: 14644401169     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2004.11.032     Document Type: Conference Paper
Times cited : (13)

References (24)
  • 1
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • M. Schena, D. Shalon, R.W. Davis, and P.O. Brown Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science 270 1995 467 470
    • (1995) Science , vol.270 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 5
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • H. De Jong Modeling and simulation of genetic regulatory systems a literature review J. Comput. Biol. 9 2002 67 103
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • De Jong, H.1
  • 6
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • H. McAdams, and A. Arkin Stochastic mechanisms in gene expression Proc. Natl. Acad. Sci. USA 94 1997 814 819
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 814-819
    • McAdams, H.1    Arkin, A.2
  • 7
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Microsoft Research
    • D. Heckerman, A tutorial on learning with Bayesian networks, Technical Report MSR-TR-95-06, Microsoft Research, 1995.
    • (1995) Technical Report , vol.MSR-TR-95-06
    • Heckerman, D.1
  • 8
    • 0002049440 scopus 로고    scopus 로고
    • Learning dynamic Bayesian networks
    • C.L. Giles, M. Gori (Eds.), Adaptive Processing of Sequences and Data Structures Springer, Berlin
    • Z. Ghahramani, Learning dynamic Bayesian networks, in: C.L. Giles, M. Gori (Eds.), Adaptive Processing of Sequences and Data Structures, Lecture Notes in Artificial Intelligence, Springer, Berlin, 1998, pp. 168-197.
    • (1998) Lecture Notes in Artificial Intelligence , pp. 168-197
    • Ghahramani, Z.1
  • 9
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • Computer Science Division, University of California Berkeley, CA
    • K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Computer Science Division, University of California Berkeley, CA, 1999.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 11
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. coli from time series expression profiles
    • I.M. Ong, J.D. Glasner, and D. Page Modelling regulatory pathways in E. coli from time series expression profiles Bioinformatics 18 2002 241S 248S
    • (2002) Bioinformatics , vol.18
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 12
    • 0014649230 scopus 로고
    • Biochemical systems analysis I & II
    • M.A. Savageau Biochemical systems analysis I & II J. Theor. Biol. 25 1969 365 379
    • (1969) J. Theor. Biol. , vol.25 , pp. 365-379
    • Savageau, M.A.1
  • 13
    • 0031626858 scopus 로고    scopus 로고
    • Rules for the evolution of gene circuitry
    • M.A. Savageau Rules for the evolution of gene circuitry Pac. Sym. Biocomput. 3 1998 54 65
    • (1998) Pac. Sym. Biocomput. , vol.3 , pp. 54-65
    • Savageau, M.A.1
  • 14
    • 4644372593 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression model for inferring gene networks
    • S.Y. Kim, S. Imoto, and S. Miyano Dynamic Bayesian network and nonparametric regression model for inferring gene networks Genome Informatics 13 2002 371 372
    • (2002) Genome Informatics , vol.13 , pp. 371-372
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 16
    • 26444479778 scopus 로고
    • S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi Science 220 1983 671; N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller J. Chem. Phys. 21 1953 1087
    • (1983) Science , vol.220 , pp. 671
    • Kirkpatrick, S.1    Gelatt Jr., C.D.2    Vecchi, M.P.3
  • 18
    • 42749107800 scopus 로고    scopus 로고
    • Guided simulated annealing method for optimization problems
    • C.I. Chou, R.S. Han, T.K. Lee, and S.P. Li Guided simulated annealing method for optimization problems Phys. Rev. E 67 2003 066704
    • (2003) Phys. Rev. E , vol.67 , pp. 066704
    • Chou, C.I.1    Han, R.S.2    Lee, T.K.3    Li, S.P.4
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz Estimating the dimension of a model Ann. Statist. 6 1978 461 464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 20
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Trans. Automat. Contr. AC-19 1974 716 723
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 21
    • 84963178774 scopus 로고
    • Further analysis of the data by Akaike's information criterion and the finite corrections
    • N. Sugiura Further analysis of the data by Akaike's information criterion and the finite corrections Commun. Statist. Theor. Meth. A7 1978 13 26
    • (1978) Commun. Statist. Theor. Meth. , vol.7 , pp. 13-26
    • Sugiura, N.1
  • 22
    • 84949748343 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data using differential equations
    • M. De Hoon, S. Imoto, S. Miyano, Inferring gene regulatory networks from time-ordered gene expression data using differential equations, Fifth International Conference on Discovery Science, 2002, pp. 267-274.
    • (2002) Fifth International Conference on Discovery Science , pp. 267-274
    • De Hoon, M.1    Imoto, S.2    Miyano, S.3
  • 23
    • 14644402119 scopus 로고    scopus 로고
    • Learning Bayesian networks by Lamarckian genetic algorithm and its application to yeast cell-cycle gene network reconstruction from time-series microarray data
    • S.C. Wang, S.P. Li, Learning Bayesian networks by Lamarckian genetic algorithm and its application to yeast cell-cycle gene network reconstruction from time-series microarray data, presented in Bio-ADIT, 2004.
    • (2004) Bio-ADIT
    • Wang, S.C.1    Li, S.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.