메뉴 건너뛰기




Volumn 3482, Issue III, 2005, Pages 309-317

Gene network prediction from microarray data by association rule and dynamic Bayesian network

Author keywords

Apriori algorithm; Association rule; Dynamic Bayesian network; Gene network

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; COMPUTER NETWORKS; COMPUTER SCIENCE; DATA PROCESSING; INTERACTIVE COMPUTER SYSTEMS;

EID: 24944468825     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/11424857_34     Document Type: Conference Paper
Times cited : (5)

References (14)
  • 1
    • 24944494194 scopus 로고    scopus 로고
    • Strong-association-rule mining for large-scale gene-expression data analysis: A case study o human SAGE data
    • Becquet, C. Blachon, S., Jeudy, B., Boulicaut, J.F. and Gandrillon, O. (2003). Strong-association-rule mining for large-scale gene-expression data analysis: a case study o human SAGE data. Genome Biol, 12, 1-16.
    • (2003) Genome Biol , vol.12 , pp. 1-16
    • Becquet, C.1    Blachon, S.2    Jeudy, B.3    Boulicaut, J.F.4    Gandrillon, O.5
  • 2
    • 0037245822 scopus 로고    scopus 로고
    • Mining gene expression databases for association rules
    • Creighton,C. and Hanash,S. (2003). Mining gene expression databases for association rules. Bioinformatics, 19, 79-86.
    • (2003) Bioinformatics , vol.19 , pp. 79-86
    • Creighton, C.1    Hanash, S.2
  • 6
    • 0034084035 scopus 로고    scopus 로고
    • Analysis of expressed sequence tags indicates 35,000 human genes
    • Ewing, B. and Green, P. (2000). Analysis of expressed sequence tags indicates 35,000 human genes. Nature Genet, 25, 232-234.
    • (2000) Nature Genet , vol.25 , pp. 232-234
    • Ewing, B.1    Green, P.2
  • 7
    • 0030725715 scopus 로고    scopus 로고
    • Functional genomics: It's all how you read it
    • Hieter, P. and Boguski, M. (1997). Functional genomics: it's all how you read it. Science, 278, 601-602.
    • (1997) Science , vol.278 , pp. 601-602
    • Hieter, P.1    Boguski, M.2
  • 8
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using Dynamic Bayesian Networks
    • Kim, S.Y., Imoto, S. and Miyano, S. (2003). Inferring gene networks from time series microarray data using Dynamic Bayesian Networks. Briefing Bioinformatics, 4(3), 228-235.
    • (2003) Briefing Bioinformatics , vol.4 , Issue.3 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 9
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian networks and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim, S.Y., Imoto, S. and Miyano, S. (2004) Dynamic Bayesian networks and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, 15, 57-65.
    • (2004) Biosystems , vol.15 , pp. 57-65
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 10
    • 0004158155 scopus 로고    scopus 로고
    • Modeling gene expression data using dynamic Bayesian networks
    • Computer Science Division, University of California, Berkeley, CA
    • Murphy, K. and Mian, S. (1999) Modeling gene expression data using dynamic Bayesian networks. Technical Report, Computer Science Division, University of California, Berkeley, CA.
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 11
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps methods and application to hematopoietic differentiation
    • Tamayo,P., Slonim,D., Mesirov,J., Zhu,Q., Kitareewan,S., Dmitrovsky,E., Lander,E.S. and Golub,T.R. (1999). Interpreting patterns of gene expression with self-organizing maps methods and application to hematopoietic differentiation. Nature Genetics, 96, 2907-2912.
    • (1999) Nature Genetics , vol.96 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3    Zhu, Q.4    Kitareewan, S.5    Dmitrovsky, E.6    Lander, E.S.7    Golub, T.R.8
  • 13
    • 0038729567 scopus 로고    scopus 로고
    • Learning rule-based models of biological process from gene expression time profiles using Gene Ontology
    • Torgeir, R.H., Astrid, L. and Jan, K. (2002). Learning rule-based models of biological process from gene expression time profiles using Gene Ontology. Bioinformatics, 19, 1116-1123.
    • (2002) Bioinformatics , vol.19 , pp. 1116-1123
    • Torgeir, R.H.1    Astrid, L.2    Jan, K.3
  • 14
    • 24944527604 scopus 로고    scopus 로고
    • A new dynamic Bayesian network approach for identifying gene regulatory networks from time course microarray data
    • Advance Access published on August 12, 2004
    • Zou, M. and Conzen, S.D. (2004) A new dynamic Bayesian network approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, Advance Access published on August 12, 2004, 1-29.
    • (2004) Bioinformatics , pp. 1-29
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.