-
1
-
-
0017133178
-
Inference and missing data
-
Rubin, Inference and missing data, Biometrika 63 (1976), pp. 581-592.
-
(1976)
Biometrika
, vol.63
, pp. 581-592
-
-
-
5
-
-
0004093524
-
-
SAGE University Papers Series on Quantitative Applications in the Social Sciences, Sage Publications, Thousand Oaks, CA
-
P.D. Allison, Missing Data, SAGE University Papers Series on Quantitative Applications in the Social Sciences, Vol. 136, Sage Publications, Thousand Oaks, CA, 2002.
-
(2002)
Missing Data
, vol.136
-
-
Allison, P.D.1
-
6
-
-
84950455641
-
Regression with missing X's: A review
-
R.J.A. Little, Regression with missing X's: A review, J. Am. Statist. Assoc. 87 (1992), pp. 1227-1237.
-
(1992)
J. Am. Statist. Assoc.
, vol.87
, pp. 1227-1237
-
-
Little, R.J.A.1
-
7
-
-
84950431939
-
Incomplete data in generalized linear models
-
J.G. Ibrahim, Incomplete data in generalized linear models, J. Am. Statist. Assoc. 85 (1990), pp. 765-769.
-
(1990)
J. Am. Statist. Assoc.
, vol.85
, pp. 765-769
-
-
Ibrahim, J.G.1
-
8
-
-
0442293662
-
Missing data: Dial M for???
-
X.-L. Meng, Missing data: Dial M for???, J. Am. Statist. Assoc. 95 (2000), pp. 1325-1330.
-
(2000)
J. Am. Statist. Assoc.
, vol.95
, pp. 1325-1330
-
-
Meng, X.-L.1
-
9
-
-
2142647296
-
What do we do with missing data? Some options for analysis of incomplete data
-
T.E. Raghunathan, What do we do with missing data? Some options for analysis of incomplete data, Annu. Rev. Public Health 25 (2004), pp. 99-117.
-
(2004)
Annu. Rev. Public Health
, vol.25
, pp. 99-117
-
-
Raghunathan, T.E.1
-
10
-
-
14944360441
-
Missing-data methods for generalized linear models: A comparative review
-
J.G. Ibrahim, M.-H. Chen, S.R. Lipsitz, and A.H. Herring, Missing-data methods for generalized linear models: A comparative review, J. Am. Statist. Assoc. 100 (2005), pp. 332-346.
-
(2005)
J. Am. Statist. Assoc.
, vol.100
, pp. 332-346
-
-
Ibrahim, J.G.1
Chen, M.-H.2
Lipsitz, S.R.3
Herring, A.H.4
-
11
-
-
33846873244
-
Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models
-
N.J. Horton and K.P. Kleinman, Much ado about nothing: A comparison of missing data methods and software to fit incomplete data regression models, Am. Stat. 61 (2007), pp. 79-90.
-
(2007)
Am. Stat.
, vol.61
, pp. 79-90
-
-
Horton, N.J.1
Kleinman, K.P.2
-
12
-
-
23044525261
-
Multiple imputation in practice: Comparison of software packages for regression models with missing variables
-
N.J. Horton and S.R. Lipsitz, Multiple imputation in practice: Comparison of software packages for regression models with missing variables, Am. Stat. 55 (2001), pp. 244-254.
-
(2001)
Am. Stat.
, vol.55
, pp. 244-254
-
-
Horton, N.J.1
Lipsitz, S.R.2
-
13
-
-
63149102671
-
MIDAS: A SAS macro for multiple imputation using distance-aided selection of donors [accessed May 25, 2009]
-
J. Siddique and O. Harel, MIDAS: A SAS macro for multiple imputation using distance-aided selection of donors [accessed May 25, 2009], J. Statist. Softw. 29 (2009), pp. 1-18.
-
(2009)
J. Statist. Softw.
, vol.29
, pp. 1-18
-
-
Siddique, J.1
Harel, O.2
-
14
-
-
4243828610
-
Informative dropout in longitudinal data analysis (with discussion)
-
P.J. Diggle and M.G. Kenward, Informative dropout in longitudinal data analysis (with discussion), Appl. Stat. 43 (1994), pp. 49-93.
-
(1994)
Appl. Stat.
, vol.43
, pp. 49-93
-
-
Diggle, P.J.1
Kenward, M.G.2
-
15
-
-
3343019343
-
Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines
-
A. Burton and D.G. Altman, Missing covariate data within cancer prognostic studies: A review of current reporting and proposed guidelines, British J. Cancer 91 (2004), pp. 4-8.
-
(2004)
British J. Cancer
, vol.91
, pp. 4-8
-
-
Burton, A.1
Altman, D.G.2
-
16
-
-
27644579038
-
Statistical methods in the journal (research letter)
-
N.J. Horton and S.S. Switzer, Statistical methods in the journal (research letter), N. Engl. J. Med. 353 (2005), pp. 1977-1979.
-
(2005)
N. Engl. J. Med.
, vol.353
, pp. 1977-1979
-
-
Horton, N.J.1
Switzer, S.S.2
-
17
-
-
75149129982
-
Last observation carried forward: A crystal ball?
-
M.G. Kenward and G. Molenberghs, Last observation carried forward: A crystal ball? J. Biopharm. Statist. 19 (2009), pp. 872-888.
-
(2009)
J. Biopharm. Statist.
, vol.19
, pp. 872-888
-
-
Kenward, M.G.1
Molenberghs, G.2
-
18
-
-
33644667710
-
Multiple imputations in sample surveys - a phenomenological Bayesian approach to nonresponse
-
Tech. Rep., U.S. Department of Commerce,Washington, DC
-
D.B. Rubin, Multiple imputations in sample surveys - a phenomenological Bayesian approach to nonresponse, in Imputation and Editing of Faulty or Missing Survey Data, Tech. Rep., U.S. Department of Commerce,Washington, DC, 1978, pp. 1-23.
-
(1978)
Imputation and Editing of Faulty Or Missing Survey Data
, pp. 1-23
-
-
Rubin, D.B.1
-
20
-
-
0001986642
-
The analysis of longitudinal ordinal data with non-random dropout
-
G. Molenberghs, M.G. Kenward, and E. Lesaffre, The analysis of longitudinal ordinal data with non-random dropout, Biometrika 84 (1997), pp. 33-44.
-
(1997)
Biometrika
, vol.84
, pp. 33-44
-
-
Molenberghs, G.1
Kenward, M.G.2
Lesaffre, E.3
-
22
-
-
0035285349
-
Analyzing incomplete political science data: An alternative algorithm for multiple imputation
-
G. King, J. Honaker, A. Joseph, and K. Scheve, Analyzing incomplete political science data: An alternative algorithm for multiple imputation, Am. Polit. Sci. Rev. 95 (2001), pp. 49-69.
-
(2001)
Am. Polit. Sci. Rev.
, vol.95
, pp. 49-69
-
-
King, G.1
Honaker, J.2
Joseph, A.3
Scheve, K.4
-
23
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
A.P. Dempster, N.M. Laird, and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. R. Statist. Soc. B 39 (1977), pp. 1-38.
-
(1977)
J. R. Statist. Soc. B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
24
-
-
84868944008
-
-
accessed November 20, 2008, Available at
-
F.E. Harrell, The Hmisc Package [accessed November 20, 2008], 2009. Available at http://cran.r-project.org/web/packages/Hmisc/Hmisc.pdf.
-
(2009)
The Hmisc Package
-
-
Harrell, F.E.1
-
25
-
-
0003802343
-
-
Chapman & Hall, New York
-
L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and regression trees, Chapman & Hall, New York, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
26
-
-
0035478854
-
Random forests
-
L. Breiman, Random forests, Mach. Learn 45 (2001), pp. 5-32.
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
27
-
-
0011996706
-
-
accessed November 20, 2008, Available at
-
L. Breiman, Manual for Setting Up, Using, and Understanding Random Forest v4.0 [accessed November 20, 2008], 2003. Available at http://oz.berkeley.edu/users/breiman/Using_random_forests_v4.0.pdf
-
(2003)
Manual for Setting Up, Using, and Understanding Random Forest V4.0
-
-
Breiman, L.1
-
28
-
-
70049115890
-
-
SAS Institute Inc, [accessed November 20, 2008]. SAS OnlineDoc 9.1.2. SAS Institute Inc., Cary, NC, Available at
-
SAS Institute Inc., The MI Procedure [accessed November 20, 2008]. SAS OnlineDoc 9.1.2. SAS Institute Inc., Cary, NC, 2004. Available at http://support.sas.com/onlinedoc/912/getDoc/statug.hlp/mi_index.htm
-
(2004)
The MI Procedure
-
-
-
29
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
P. Rosenbaum and D. Rubin, The central role of the propensity score in observational studies for causal effects, Biometrika 70 (1983), pp. 41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.1
Rubin, D.2
-
30
-
-
0002241694
-
The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem
-
G. Celeux and J. Diebolt, The SEM algorithm: A probabilistic teacher algorithm derived from the EM algorithm for the mixture problem, Comput. Statist. Q. 2 (1985), pp. 73-82.
-
(1985)
Comput. Statist. Q
, vol.2
, pp. 73-82
-
-
Celeux, G.1
Diebolt, J.2
-
31
-
-
0002241603
-
Stochastic EM: Method and application
-
W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, eds., Chapman & Hall, London
-
J. Diebolt and E.H.S. Ip, Stochastic EM: Method and application, in Markov Chain Monte Carlo in Practice, W.R. Gilks, S. Richardson, and D.J. Spiegelhalter, eds., Chapman & Hall, London, 1996.
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
Diebolt, J.1
Ip, E.H.S.2
-
33
-
-
33646076443
-
Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm
-
A.M. Gad and A.S. Ahmed, Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm, Comput. Stat. Data Anal. 50 (2006), pp. 2702-2714.
-
(2006)
Comput. Stat. Data Anal.
, vol.50
, pp. 2702-2714
-
-
Gad, A.M.1
Ahmed, A.S.2
-
34
-
-
77958076540
-
MCMC-based estimation methods for continuous longitudinal data with non-random (non)-monotone missingness
-
C. Sotto, C. Beunckens, G. Molenberghs, and M.G. Kenward, MCMC-based estimation methods for continuous longitudinal data with non-random (non)-monotone missingness, Comput. Statist. Data Anal. 55 (2011), pp. 301-311.
-
(2011)
Comput. Statist. Data Anal.
, vol.55
, pp. 301-311
-
-
Sotto, C.1
Beunckens, C.2
Molenberghs, G.3
Kenward, M.G.4
-
35
-
-
0001608056
-
An R-squared measure of goodness of fit for some common nonlinear regression models
-
A.C. Cameron and F.A.G. Windmeijer, An R-squared measure of goodness of fit for some common nonlinear regression models, J. Econom. 77 (1997), pp. 329-342.
-
(1997)
J. Econom.
, vol.77
, pp. 329-342
-
-
Cameron, A.C.1
Windmeijer, F.A.G.2
-
36
-
-
0001206510
-
Coarsening at random: Characterizations, conjectures and counterexamples
-
D.Y. Lin and T.R. Fleming, eds., Springer, NewYork
-
R.D. Gill, M.J. van der Laan, and J.M. Robins, Coarsening at random: Characterizations, conjectures and counterexamples, in Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis, D.Y. Lin and T.R. Fleming, eds., Springer, NewYork, 1997.
-
(1997)
Proceedings of the First Seattle Symposium in Biostatistics: Survival Analysis
-
-
Gill, R.D.1
van der Laan, M.J.2
Robins, J.M.3
-
37
-
-
0002373852
-
Discussion to Diggle
-
P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis
-
N.M. Laird, Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis, J. R. Statist. Soc. C 43 (1994), p. 84.
-
(1994)
J. R. Statist. Soc. C
, vol.43
, pp. 84
-
-
Laird, N.M.1
-
38
-
-
38949124382
-
Every missingness not at random model has a missingness at random counterpart with equal fit
-
G. Molenberghs, C. Beunckens, C. Sotto, and M. Kenward, Every missingness not at random model has a missingness at random counterpart with equal fit, J. R. Statist. Soc. B 70 (2008), pp. 371-388.
-
(2008)
J. R. Statist. Soc. B
, vol.70
, pp. 371-388
-
-
Molenberghs, G.1
Beunckens, C.2
Sotto, C.3
Kenward, M.4
-
39
-
-
8544270082
-
Interferon α-IIA is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial
-
Pharmacological Therapy for Macular Degeneration Study Group
-
Pharmacological Therapy for Macular Degeneration Study Group, Interferon α-IIA is ineffective for patients with choroidal neovascularization secondary to age-related macular degeneration. Results of a prospective randomized placebo-controlled clinical trial, Arch. Ophthalmol. 115 (1997), pp. 865-872.
-
(1997)
Arch. Ophthalmol.
, vol.115
, pp. 865-872
-
-
-
40
-
-
0031708453
-
The validation of surrogate endpoints in randomized experiments
-
M. Buyse and G. Molenberghs, The validation of surrogate endpoints in randomized experiments, Biometrics 54 (1998), pp. 1014-1029.
-
(1998)
Biometrics
, vol.54
, pp. 1014-1029
-
-
Buyse, M.1
Molenberghs, G.2
-
41
-
-
54549100336
-
Alternative methods to evaluate trial level surrogacy
-
J. Cortiñas Abrahantes, Z. Shkedy, and G. Molenberghs, Alternative methods to evaluate trial level surrogacy, Clin. Trials 5 (2008), pp. 194-208.
-
(2008)
Clin. Trials
, vol.5
, pp. 194-208
-
-
Cortiñas Abrahantes, J.1
Shkedy, Z.2
Molenberghs, G.3
|