메뉴 건너뛰기




Volumn 50, Issue 10, 2006, Pages 2702-2714

Analysis of longitudinal data with intermittent missing values using the stochastic EM algorithm

Author keywords

Breast cancer; Nonrandom intermittent missing; Quality of life; Repeated measures; Standard errors; The stochastic EM algorithm

Indexed keywords

ALGORITHMS; HOSPITAL DATA PROCESSING; MONTE CARLO METHODS; PARAMETER ESTIMATION; PROBABILITY;

EID: 33646076443     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2005.04.006     Document Type: Article
Times cited : (13)

References (30)
  • 1
    • 0002241694 scopus 로고
    • The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problems
    • Celuex G., and Diebolt J. The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problems. Computat. Statist. Quart. 2 (1985) 73-82
    • (1985) Computat. Statist. Quart. , vol.2 , pp. 73-82
    • Celuex, G.1    Diebolt, J.2
  • 3
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon B., Lavielle M., and Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Statist. 27 (1999) 94-128
    • (1999) Ann. Statist. , vol.27 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 4
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (with discussion)
    • Dempster A.P., Larid N.M., and Rubin D.B. Maximum likelihood from incomplete data via the EM algorithm (with discussion). J. Roy. Statist. Soc. B 39 (1977) 1-38
    • (1977) J. Roy. Statist. Soc. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Larid, N.M.2    Rubin, D.B.3
  • 5
    • 0002241603 scopus 로고    scopus 로고
    • Stochastic EM: method and application
    • Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds), Chapman & Hall, London (Chapter 15)
    • Diebolt J., and Ip E.H.S. Stochastic EM: method and application. In: Gilks W.R., Richardson S., and Spiegelhalter D.J. (Eds). Markov Chain Monte Carlo in Practice (1996), Chapman & Hall, London (Chapter 15)
    • (1996) Markov Chain Monte Carlo in Practice
    • Diebolt, J.1    Ip, E.H.S.2
  • 6
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis
    • Diggle P.J., and Kenward M.G. Informative dropout in longitudinal data analysis. J. Roy. Statist. Soc. B 43 (1994) 49-93
    • (1994) J. Roy. Statist. Soc. B , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 7
    • 21344497888 scopus 로고
    • Missing data, imputation, and the bootstrap
    • Efron B. Missing data, imputation, and the bootstrap. J. Amer. Statist. Assoc. 89 (1994) 463-475
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 463-475
    • Efron, B.1
  • 9
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman A., and Rubin D.B. Inference from iterative simulation using multiple sequences (with discussion). Statist. Sci. 7 (1992) 457-511
    • (1992) Statist. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 10
    • 13144294075 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems
    • Gu M.G., and Kong F.H. A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems. Proc. Natl. Acad. Sci. USA 98 (1998) 7270-7274
    • (1998) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 7270-7274
    • Gu, M.G.1    Kong, F.H.2
  • 12
    • 0037507563 scopus 로고    scopus 로고
    • Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable
    • Ibrahim J.G., Chen M.H., and Lipsitz S.R. Missing responses in generalized linear mixed models when the missing data mechanism is nonignorable. Biometrika 88 (2001) 551-564
    • (2001) Biometrika , vol.88 , pp. 551-564
    • Ibrahim, J.G.1    Chen, M.H.2    Lipsitz, S.R.3
  • 13
    • 33646106277 scopus 로고    scopus 로고
    • Ip, E.H.S., 1994. A stochastic EM estimator in the presence of missing data: theory and applications. Technical Report, Division of Biostatistics, Stanford University, Stanford, California, US.
  • 14
    • 0022966316 scopus 로고
    • Unbalanced repeated measures models with structured covariance matrices
    • Jennrich R.I., and Schluchter M.D. Unbalanced repeated measures models with structured covariance matrices. Biometrika 42 (1986) 805-820
    • (1986) Biometrika , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 15
    • 0000808747 scopus 로고
    • A gradient algorithm locally equivalent to the EM algorithm
    • Lange K.L. A gradient algorithm locally equivalent to the EM algorithm. J. Roy. Statist. Soc. B 57 (1995) 425-437
    • (1995) J. Roy. Statist. Soc. B , vol.57 , pp. 425-437
    • Lange, K.L.1
  • 17
    • 0000315742 scopus 로고
    • The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
    • Liu C., and Rubin D.B. The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81 (1994) 633-648
    • (1994) Biometrika , vol.81 , pp. 633-648
    • Liu, C.1    Rubin, D.B.2
  • 18
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T.A. Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. B 44 (1982) 226-232
    • (1982) J. Roy. Statist. Soc. B , vol.44 , pp. 226-232
    • Louis, T.A.1
  • 20
    • 0001232538 scopus 로고
    • A fast improvement to the EM algorithm on its own terms
    • Meilijson I. A fast improvement to the EM algorithm on its own terms. J. Roy. Statist. Soc. B 51 (1989) 127-138
    • (1989) J. Roy. Statist. Soc. B , vol.51 , pp. 127-138
    • Meilijson, I.1
  • 21
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm
    • Meng X.L., and Rubin D.B. Using EM to obtain asymptotic variance-covariance matrices: the SEM algorithm. J. Amer. Statist. Assoc. 86 (1991) 899-909
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 899-909
    • Meng, X.L.1    Rubin, D.B.2
  • 22
    • 0000251971 scopus 로고
    • Maximum likelihood estimation via the ECM algorithm: a general framework
    • Meng X.L., and Rubin D.B. Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80 (1993) 267-278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 23
    • 33646075661 scopus 로고    scopus 로고
    • Meng, X.L., van Dyk, D., 1995. The EM algorithm-an old folk song sung to a fast new tune. Technical Report No. 408. Department of Statistics, University of Chicago, Chicago.
  • 24
    • 0000238336 scopus 로고
    • A simplex method for function minimisation
    • Nelder J.A., and Mead R. A simplex method for function minimisation. Comput. J. 7 (1965) 303-313
    • (1965) Comput. J. , vol.7 , pp. 303-313
    • Nelder, J.A.1    Mead, R.2
  • 25
    • 0027248708 scopus 로고
    • Improving the EM algorithm
    • Rai S.N., and Matthews D.E. Improving the EM algorithm. Biometrics 49 (1993) 587-591
    • (1993) Biometrics , vol.49 , pp. 587-591
    • Rai, S.N.1    Matthews, D.E.2
  • 26
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin D.B. Inference and missing data. Biometrika 63 (1976) 581-592
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 27
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner M.A., and Wong W.H. The calculation of posterior distributions by data augmentation (with discussion). J. Amer. Statist. Assoc. 82 (1987) 528-550
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 28
    • 0039982650 scopus 로고    scopus 로고
    • Analysis of longitudinal data with non-ignorable non monotone missing values
    • Troxel A.B., Harrington D.P., and Lipsitz S.R. Analysis of longitudinal data with non-ignorable non monotone missing values. Appl. Statist. 47 (1998) 425-438
    • (1998) Appl. Statist. , vol.47 , pp. 425-438
    • Troxel, A.B.1    Harrington, D.P.2    Lipsitz, S.R.3
  • 29
    • 33646100934 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm
    • Wei G.C.G., and Tanner M.A. A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithm. J. Roy. Statist. Soc. B 55 (1990) 425-437
    • (1990) J. Roy. Statist. Soc. B , vol.55 , pp. 425-437
    • Wei, G.C.G.1    Tanner, M.A.2
  • 30
    • 0141791115 scopus 로고    scopus 로고
    • Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte Carlo method
    • Zhu H.T., and Lee S.Y. Analysis of generalized linear mixed models via a stochastic approximation algorithm with Markov chain Monte Carlo method. Statist. Comput. 12 (2002) 175-183
    • (2002) Statist. Comput. , vol.12 , pp. 175-183
    • Zhu, H.T.1    Lee, S.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.