-
1
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999; 286(5439): 531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
-
2
-
-
18544365698
-
Gene-expression profiles predict survival of patients with lung adenocarcinoma
-
Beer DG, Kardia S, Huang C-C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002; 8(8): 816-824.
-
(2002)
Nat Med
, vol.8
, Issue.8
, pp. 816-824
-
-
Beer, D.G.1
Kardia, S.2
Huang, C.-C.3
-
5
-
-
2942608807
-
-
New York: Springer Verlag;
-
Simon R, Korn EL, McShane LM, Radmacher MD, Wright GW, Zhao Y. Design and Analysis of DNA Microarray Investigations. New York: Springer Verlag; 2005.
-
(2005)
Design and Analysis of DNA Microarray Investigations
-
-
Simon, R.1
Korn, E.L.2
McShane, L.M.3
Radmacher, M.D.4
Wright, G.W.5
Zhao, Y.6
-
6
-
-
0037316303
-
A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
-
Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19(2): 185-193.
-
(2003)
Bioinformatics
, vol.19
, Issue.2
, pp. 185-193
-
-
Bolstad, B.M.1
Irizarry, R.A.2
Astrand, M.3
Speed, T.P.4
-
7
-
-
0142121516
-
Exploration, normalization, and summaries of high density oligonucleotide array probe level data
-
Irizarry A, Hobbs RB, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4(2): 249-264.
-
(2003)
Biostatistics
, vol.4
, Issue.2
, pp. 249-264
-
-
Irizarry, A.1
Hobbs, R.B.2
Collin, F.3
Beazer-Barclay, Y.D.4
Antonellis, K.J.5
Scherf, U.6
Speed, T.P.7
-
8
-
-
58149156463
-
Statistical challenges in preprocessing in -microarray experiments in cancer
-
Owzar K, Barry WT, Jung SH, Sohn I, George SL. Statistical challenges in preprocessing in -microarray experiments in cancer. Clin Cancer Res. 2008; 14(19): 5959-5966.
-
(2008)
Clin Cancer Res.
, vol.14
, Issue.19
, pp. 5959-5966
-
-
Owzar, K.1
Barry, W.T.2
Jung, S.H.3
Sohn, I.4
George, S.L.5
-
9
-
-
1342330572
-
A benchmark for Affymetrix GeneChip expression measures
-
Cope LM, Irizarry RA, Jaffee HA, Wu Z, Speed TP. A benchmark for Affymetrix GeneChip expression measures. Bioinformatics. 2004; 20(3): 323-331.
-
(2004)
Bioinformatics.
, vol.20
, Issue.3
, pp. 323-331
-
-
Cope, L.M.1
Irizarry, R.A.2
Jaffee, H.A.3
Wu, Z.4
Speed, T.P.5
-
10
-
-
33645326509
-
Comparison of Affymetrix GeneChip expression measures
-
Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006; 22(7): 789-794.
-
(2006)
Bioinformatics
, vol.22
, Issue.7
, pp. 789-794
-
-
Irizarry, R.A.1
Wu, Z.2
Jaffee, H.A.3
-
11
-
-
77952851186
-
Comparison of normalization methods for Illumina -BeadChip HumanHT-12 v3
-
Schmid R, Baum P, Ittrich C, et al. Comparison of normalization methods for Illumina -BeadChip HumanHT-12 v3. BMC Genomics. 2010; 11(1): 349.
-
(2010)
BMC Genomics
, vol.11
, Issue.1
, pp. 349
-
-
Schmid, R.1
Baum, P.2
Ittrich, C.3
-
12
-
-
62549119576
-
Statistical methods of background correction for Illumina BeadArray data
-
Xie Y, Wang X, Story M. Statistical methods of background correction for Illumina BeadArray data. Bioinformatics. 2009; 25(6): 751-757.
-
(2009)
Bioinformatics
, vol.25
, Issue.6
, pp. 751-757
-
-
Xie, Y.1
Wang, X.2
Story, M.3
-
14
-
-
0000336139
-
Regression models and life-tables
-
Cox DR. Regression models and life-tables. J Stat Soc Ser B. 1972; 34: 187-220.
-
(1972)
J Stat Soc Ser B.
, vol.34
, pp. 187-220
-
-
Cox, D.R.1
-
15
-
-
27144510596
-
A multiple testing procedure to associate gene expression levels with survival
-
Jung S-H, Owzar K, George SL. A multiple testing procedure to associate gene expression levels with survival. Stat Med. 2005; 24(20): 3077-3088.
-
(2005)
Stat Med.
, vol.24
, Issue.20
, pp. 3077-3088
-
-
Jung, S.-H.1
Owzar, K.2
George, S.L.3
-
17
-
-
0041530047
-
Resampling-based multiple testing for microarray data analysis
-
Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. TEST 2003; 12(1): 1-77.
-
(2003)
TEST
, vol.12
, Issue.1
, pp. 1-77
-
-
Ge, Y.1
Dudoit, S.2
Speed, T.P.3
-
18
-
-
0001677717
-
Controlling the false discovery rate: a practical and powerful -approach to multiple testing
-
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful -approach to multiple testing. J Stat Soc Ser B. 1995; 57: 289-300.
-
(1995)
J Stat Soc Ser B.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
19
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. newblock Ann Statist. 2001; 29: 1165-1188.
-
(2001)
newblock Ann Statist.
, vol.29
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
20
-
-
0345822598
-
The positive false discovery rate: a Bayesian interpretation and the q-value
-
Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Statist. 2003; 31(6): 2013-2035.
-
(2003)
Ann Statist.
, vol.31
, Issue.6
, pp. 2013-2035
-
-
Storey, J.D.1
-
21
-
-
33747877325
-
How accurately can we control the FDR in analyzing microarray data
-
Jung SH, Jang W. How accurately can we control the FDR in analyzing microarray data? -Bioinformatics 2006; 22: 1730-1736.
-
(2006)
-Bioinformatics
, vol.22
, pp. 1730-1736
-
-
Jung, S.H.1
Jang, W.2
-
26
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
-
(2001)
Mach Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
28
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani R. Regression shrinkage and selection via the LASSO. J Stat Soc Ser B. 1996; 58(1): 267-288.
-
(1996)
J Stat Soc Ser B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
30
-
-
0038054341
-
PGC-1alpha-responsive genes involved in -oxidative phosphorylation are coordinately downregulated in human diabetes
-
Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in -oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3): 267-273.
-
(2003)
Nat Genet.
, vol.34
, Issue.3
, pp. 267-273
-
-
Mootha, V.K.1
Lindgren, C.M.2
Eriksson, K.F.3
-
31
-
-
35348890683
-
On testing the significance of sets of genes
-
Efron B, Tibshirani R.On testing the significance of sets of genes. Ann Appl Stat. 2007; 1(1): 107-129.
-
(2007)
Ann Appl Stat.
, vol.1
, Issue.1
, pp. 107-129
-
-
Efron, B.1
Tibshirani, R.2
-
32
-
-
18744389489
-
Significance analysis of functional categories in gene expression studies: a structured permutation approach
-
Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics. 2005; 21(9): 1943-1949.
-
(2005)
Bioinformatics
, vol.21
, Issue.9
, pp. 1943-1949
-
-
Barry, W.T.1
Nobel, A.B.2
Wright, F.A.3
-
33
-
-
60149104156
-
A statistical framework for testing functional categories in microarray data
-
Barry WT, Nobel AB, Wright FA. A statistical framework for testing functional categories in microarray data. Ann Appl Stat. 2008; 2(1): 286-315.
-
(2008)
Ann Appl Stat.
, vol.2
, Issue.1
, pp. 286-315
-
-
Barry, W.T.1
Nobel, A.B.2
Wright, F.A.3
-
34
-
-
0034651669
-
On the relative sample size required for multiple comparisons
-
Witte JS, Elston RC, Cardon LR. On the relative sample size required for multiple comparisons. Stat Med. 2000; 29: 369-372.
-
(2000)
Stat Med.
, vol.29
, pp. 369-372
-
-
Witte, J.S.1
Elston, R.C.2
Cardon, L.R.3
-
35
-
-
0035687554
-
Assessing gene significance from cDNA microarray expression data via mixed models
-
Wolfinger RD, Gibson G, Wolfinger ED, et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol. 2001; 8: 625-637.
-
(2001)
J Comput Biol.
, vol.8
, pp. 625-637
-
-
Wolfinger, R.D.1
Gibson, G.2
Wolfinger, E.D.3
-
36
-
-
0036953264
-
Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments
-
Black MA, Doerge RW. Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments. Bioinformatics. 2002; 18: 1609-1616.
-
(2002)
Bioinformatics
, vol.18
, pp. 1609-1616
-
-
Black, M.A.1
Doerge, R.W.2
-
37
-
-
0036051492
-
How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
-
Pan W, Lin J, Le CT. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 2002; 3(5): 1-10.
-
(2002)
Genome Biol.
, vol.3
, Issue.5
, pp. 1-10
-
-
Pan, W.1
Lin, J.2
Le, C.T.3
-
38
-
-
3943112078
-
How many mice and how many arrays? Replication in mouse cDNA microarray experiments
-
Johnson KJ, Lin S (eds.), Norwell, MA: Kluwer Academic Publishers
-
Cui X, Churchill GA. How many mice and how many arrays? Replication in mouse cDNA microarray experiments. In: Johnson KJ, Lin S (eds.), Methods of Microarray Data Analysis II. Norwell, MA: Kluwer Academic Publishers; 2003: 139-154.
-
(2003)
Methods of Microarray Data Analysis II.
, pp. 139-154
-
-
Cui, X.1
Churchill, G.A.2
-
39
-
-
0037114470
-
Power and sample size for DNA microarray studies
-
Whitmore GA, Lee MLT. Power and sample size for DNA microarray studies. Stat Med. 2002; 21: 3543-3570.
-
(2002)
Stat Med.
, vol.21
, pp. 3543-3570
-
-
Whitmore, G.A.1
Lee, M.L.T.2
-
40
-
-
21644451292
-
Sample size calculation for multiple testing in microarray data analysis
-
Jung SH, Bang H, Young SS. Sample size calculation for multiple testing in microarray data analysis. Biostatics 2005; 6: 157-169.
-
(2005)
Biostatics
, vol.6
, pp. 157-169
-
-
Jung, S.H.1
Bang, H.2
Young, S.S.3
-
41
-
-
84856302345
-
Power and sample size calculation for microarray studies
-
press.
-
Jung SH, Young SS. Power and sample size calculation for microarray studies. J Biopharm Stat. In press.
-
J Biopharm Stat
-
-
Jung, S.H.1
Young, S.S.2
-
42
-
-
25144463543
-
Sample size for FDR-control in microarray data analysis
-
Jung SH. Sample size for FDR-control in microarray data analysis. Bioinformatics. 1995; 21: 3097-3103.
-
(1995)
Bioinformatics
, vol.21
, pp. 3097-3103
-
-
Jung, S.H.1
-
43
-
-
28444492997
-
Sample size determination for the false discovery rate
-
Pounds S, Cheng C. Sample size determination for the false discovery rate. Bioinformatics. 2005; 21: 4236-4271.
-
(2005)
Bioinformatics
, vol.21
, pp. 4236-4271
-
-
Pounds, S.1
Cheng, C.2
-
44
-
-
34147178433
-
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
-
Liu P, Hwang JTG. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics. 2007; 23: 739-746.
-
(2007)
Bioinformatics
, vol.23
, pp. 739-746
-
-
Liu, P.1
Hwang, J.T.G.2
-
45
-
-
0035845511
-
Gene expression patterns of breast carcinomas -distinguish tumor subclasses with clinical implications
-
Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas -distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98: 10869-10874.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10869-10874
-
-
Sorlie, T.1
Perou, C.M.2
Tibshirani, R.3
-
46
-
-
0035923521
-
Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
-
Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001; 98: 13790-13795.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
-
47
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
Van 't Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002; 415: 530-536.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
Van 't Veer, L.J.1
Dai, H.2
Van de Vijver, M.J.3
-
48
-
-
33748324384
-
-
R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing;
-
R Development Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2006.
-
(2006)
R: A Language and Environment for Statistical Computing
-
-
-
49
-
-
28744458859
-
Bioconductor: open software development for -computational biology and bioinformatics
-
Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for -computational biology and bioinformatics. Genome Biol. 2004; 5: R80.
-
(2004)
Genome Biol
, vol.5
-
-
Gentleman, R.C.1
Carey, V.J.2
Bates, D.M.3
-
50
-
-
75249089153
-
The gputools package enables GPU computing in R
-
Buckner J, Wilson J, Seligman M, et al. The gputools package enables GPU computing in R. Bioinformatics. 2010; 26(1): 134-135.
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 134-135
-
-
Buckner, J.1
Wilson, J.2
Seligman, M.3
-
51
-
-
77953494008
-
permGPU: using graphics processing units in RNA microarray association studies
-
Shterev ID, Jung SH, George SL, et al. permGPU: using graphics processing units in RNA microarray association studies. BMC Bioinformatics. 2010; 11(329).
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.329
-
-
Shterev, I.D.1
Jung, S.H.2
George, S.L.3
-
52
-
-
0004221707
-
-
California: Stanford University Center for the Study of Language and Information;
-
Knuth DE. Literate Programming. California: Stanford University Center for the Study of Language and Information; 1992.
-
(1992)
Literate Programming
-
-
Knuth, D.E.1
-
57
-
-
57149094101
-
-
Hahne F, Huber W, Gentleman R, et al. eds. New York: Springer Verlag;
-
Hahne F, Huber W, Gentleman R, et al. eds. Bioconductor Case Studies. New York: Springer Verlag; 2008.
-
(2008)
Bioconductor Case Studies
-
-
|