메뉴 건너뛰기




Volumn 4, Issue 6, 2011, Pages 466-477

Statistical considerations for analysis of microarray experiments

Author keywords

Clinical trials; Microarrays; Multiple testing; Overfitting; Pathways; Power; Preprocessing; Software; Statistical inference; Supervised learning; Unsupervised learning; Validation

Indexed keywords

ALGORITHM; ANALYSIS OF VARIANCE; ARTICLE; BLOOD PRESSURE; COMPUTER PROGRAM; CORRELATION COEFFICIENT; GENE EXPRESSION PROFILING; GENETIC MARKER; GENOMICS; LUNG CANCER; MICROARRAY ANALYSIS; MOLECULAR GENETICS; MOLECULAR PROBE; NOISE; PHENOTYPE; PRIORITY JOURNAL; PROGNOSIS; REPRODUCIBILITY; SIMULATION; VALIDATION STUDY;

EID: 84855193909     PISSN: 17528054     EISSN: 17528062     Source Type: Journal    
DOI: 10.1111/j.1752-8062.2011.00309.x     Document Type: Article
Times cited : (25)

References (57)
  • 1
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999; 286(5439): 531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3
  • 2
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer DG, Kardia S, Huang C-C, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med. 2002; 8(8): 816-824.
    • (2002) Nat Med , vol.8 , Issue.8 , pp. 816-824
    • Beer, D.G.1    Kardia, S.2    Huang, C.-C.3
  • 6
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19(2): 185-193.
    • (2003) Bioinformatics , vol.19 , Issue.2 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 8
    • 58149156463 scopus 로고    scopus 로고
    • Statistical challenges in preprocessing in -microarray experiments in cancer
    • Owzar K, Barry WT, Jung SH, Sohn I, George SL. Statistical challenges in preprocessing in -microarray experiments in cancer. Clin Cancer Res. 2008; 14(19): 5959-5966.
    • (2008) Clin Cancer Res. , vol.14 , Issue.19 , pp. 5959-5966
    • Owzar, K.1    Barry, W.T.2    Jung, S.H.3    Sohn, I.4    George, S.L.5
  • 10
    • 33645326509 scopus 로고    scopus 로고
    • Comparison of Affymetrix GeneChip expression measures
    • Irizarry RA, Wu Z, Jaffee HA. Comparison of Affymetrix GeneChip expression measures. Bioinformatics. 2006; 22(7): 789-794.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 789-794
    • Irizarry, R.A.1    Wu, Z.2    Jaffee, H.A.3
  • 11
    • 77952851186 scopus 로고    scopus 로고
    • Comparison of normalization methods for Illumina -BeadChip HumanHT-12 v3
    • Schmid R, Baum P, Ittrich C, et al. Comparison of normalization methods for Illumina -BeadChip HumanHT-12 v3. BMC Genomics. 2010; 11(1): 349.
    • (2010) BMC Genomics , vol.11 , Issue.1 , pp. 349
    • Schmid, R.1    Baum, P.2    Ittrich, C.3
  • 12
    • 62549119576 scopus 로고    scopus 로고
    • Statistical methods of background correction for Illumina BeadArray data
    • Xie Y, Wang X, Story M. Statistical methods of background correction for Illumina BeadArray data. Bioinformatics. 2009; 25(6): 751-757.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 751-757
    • Xie, Y.1    Wang, X.2    Story, M.3
  • 14
    • 0000336139 scopus 로고
    • Regression models and life-tables
    • Cox DR. Regression models and life-tables. J Stat Soc Ser B. 1972; 34: 187-220.
    • (1972) J Stat Soc Ser B. , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 15
    • 27144510596 scopus 로고    scopus 로고
    • A multiple testing procedure to associate gene expression levels with survival
    • Jung S-H, Owzar K, George SL. A multiple testing procedure to associate gene expression levels with survival. Stat Med. 2005; 24(20): 3077-3088.
    • (2005) Stat Med. , vol.24 , Issue.20 , pp. 3077-3088
    • Jung, S.-H.1    Owzar, K.2    George, S.L.3
  • 17
    • 0041530047 scopus 로고    scopus 로고
    • Resampling-based multiple testing for microarray data analysis
    • Ge Y, Dudoit S, Speed TP. Resampling-based multiple testing for microarray data analysis. TEST 2003; 12(1): 1-77.
    • (2003) TEST , vol.12 , Issue.1 , pp. 1-77
    • Ge, Y.1    Dudoit, S.2    Speed, T.P.3
  • 18
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful -approach to multiple testing
    • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful -approach to multiple testing. J Stat Soc Ser B. 1995; 57: 289-300.
    • (1995) J Stat Soc Ser B. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 19
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. newblock Ann Statist. 2001; 29: 1165-1188.
    • (2001) newblock Ann Statist. , vol.29 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 20
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: a Bayesian interpretation and the q-value
    • Storey JD. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Statist. 2003; 31(6): 2013-2035.
    • (2003) Ann Statist. , vol.31 , Issue.6 , pp. 2013-2035
    • Storey, J.D.1
  • 21
    • 33747877325 scopus 로고    scopus 로고
    • How accurately can we control the FDR in analyzing microarray data
    • Jung SH, Jang W. How accurately can we control the FDR in analyzing microarray data? -Bioinformatics 2006; 22: 1730-1736.
    • (2006) -Bioinformatics , vol.22 , pp. 1730-1736
    • Jung, S.H.1    Jang, W.2
  • 26
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001; 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 28
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani R. Regression shrinkage and selection via the LASSO. J Stat Soc Ser B. 1996; 58(1): 267-288.
    • (1996) J Stat Soc Ser B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpha-responsive genes involved in -oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in -oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003; 34(3): 267-273.
    • (2003) Nat Genet. , vol.34 , Issue.3 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3
  • 31
    • 35348890683 scopus 로고    scopus 로고
    • On testing the significance of sets of genes
    • Efron B, Tibshirani R.On testing the significance of sets of genes. Ann Appl Stat. 2007; 1(1): 107-129.
    • (2007) Ann Appl Stat. , vol.1 , Issue.1 , pp. 107-129
    • Efron, B.1    Tibshirani, R.2
  • 32
    • 18744389489 scopus 로고    scopus 로고
    • Significance analysis of functional categories in gene expression studies: a structured permutation approach
    • Barry WT, Nobel AB, Wright FA. Significance analysis of functional categories in gene expression studies: a structured permutation approach. Bioinformatics. 2005; 21(9): 1943-1949.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1943-1949
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 33
    • 60149104156 scopus 로고    scopus 로고
    • A statistical framework for testing functional categories in microarray data
    • Barry WT, Nobel AB, Wright FA. A statistical framework for testing functional categories in microarray data. Ann Appl Stat. 2008; 2(1): 286-315.
    • (2008) Ann Appl Stat. , vol.2 , Issue.1 , pp. 286-315
    • Barry, W.T.1    Nobel, A.B.2    Wright, F.A.3
  • 34
    • 0034651669 scopus 로고    scopus 로고
    • On the relative sample size required for multiple comparisons
    • Witte JS, Elston RC, Cardon LR. On the relative sample size required for multiple comparisons. Stat Med. 2000; 29: 369-372.
    • (2000) Stat Med. , vol.29 , pp. 369-372
    • Witte, J.S.1    Elston, R.C.2    Cardon, L.R.3
  • 35
    • 0035687554 scopus 로고    scopus 로고
    • Assessing gene significance from cDNA microarray expression data via mixed models
    • Wolfinger RD, Gibson G, Wolfinger ED, et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol. 2001; 8: 625-637.
    • (2001) J Comput Biol. , vol.8 , pp. 625-637
    • Wolfinger, R.D.1    Gibson, G.2    Wolfinger, E.D.3
  • 36
    • 0036953264 scopus 로고    scopus 로고
    • Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments
    • Black MA, Doerge RW. Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments. Bioinformatics. 2002; 18: 1609-1616.
    • (2002) Bioinformatics , vol.18 , pp. 1609-1616
    • Black, M.A.1    Doerge, R.W.2
  • 37
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • Pan W, Lin J, Le CT. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 2002; 3(5): 1-10.
    • (2002) Genome Biol. , vol.3 , Issue.5 , pp. 1-10
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 38
    • 3943112078 scopus 로고    scopus 로고
    • How many mice and how many arrays? Replication in mouse cDNA microarray experiments
    • Johnson KJ, Lin S (eds.), Norwell, MA: Kluwer Academic Publishers
    • Cui X, Churchill GA. How many mice and how many arrays? Replication in mouse cDNA microarray experiments. In: Johnson KJ, Lin S (eds.), Methods of Microarray Data Analysis II. Norwell, MA: Kluwer Academic Publishers; 2003: 139-154.
    • (2003) Methods of Microarray Data Analysis II. , pp. 139-154
    • Cui, X.1    Churchill, G.A.2
  • 39
    • 0037114470 scopus 로고    scopus 로고
    • Power and sample size for DNA microarray studies
    • Whitmore GA, Lee MLT. Power and sample size for DNA microarray studies. Stat Med. 2002; 21: 3543-3570.
    • (2002) Stat Med. , vol.21 , pp. 3543-3570
    • Whitmore, G.A.1    Lee, M.L.T.2
  • 40
    • 21644451292 scopus 로고    scopus 로고
    • Sample size calculation for multiple testing in microarray data analysis
    • Jung SH, Bang H, Young SS. Sample size calculation for multiple testing in microarray data analysis. Biostatics 2005; 6: 157-169.
    • (2005) Biostatics , vol.6 , pp. 157-169
    • Jung, S.H.1    Bang, H.2    Young, S.S.3
  • 41
    • 84856302345 scopus 로고    scopus 로고
    • Power and sample size calculation for microarray studies
    • press.
    • Jung SH, Young SS. Power and sample size calculation for microarray studies. J Biopharm Stat. In press.
    • J Biopharm Stat
    • Jung, S.H.1    Young, S.S.2
  • 42
    • 25144463543 scopus 로고
    • Sample size for FDR-control in microarray data analysis
    • Jung SH. Sample size for FDR-control in microarray data analysis. Bioinformatics. 1995; 21: 3097-3103.
    • (1995) Bioinformatics , vol.21 , pp. 3097-3103
    • Jung, S.H.1
  • 43
    • 28444492997 scopus 로고    scopus 로고
    • Sample size determination for the false discovery rate
    • Pounds S, Cheng C. Sample size determination for the false discovery rate. Bioinformatics. 2005; 21: 4236-4271.
    • (2005) Bioinformatics , vol.21 , pp. 4236-4271
    • Pounds, S.1    Cheng, C.2
  • 44
    • 34147178433 scopus 로고    scopus 로고
    • Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
    • Liu P, Hwang JTG. Quick calculation for sample size while controlling false discovery rate with application to microarray analysis. Bioinformatics. 2007; 23: 739-746.
    • (2007) Bioinformatics , vol.23 , pp. 739-746
    • Liu, P.1    Hwang, J.T.G.2
  • 45
    • 0035845511 scopus 로고    scopus 로고
    • Gene expression patterns of breast carcinomas -distinguish tumor subclasses with clinical implications
    • Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas -distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001; 98: 10869-10874.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 10869-10874
    • Sorlie, T.1    Perou, C.M.2    Tibshirani, R.3
  • 46
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001; 98: 13790-13795.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3
  • 47
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • Van 't Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002; 415: 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van 't Veer, L.J.1    Dai, H.2    Van de Vijver, M.J.3
  • 48
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team, Vienna, Austria: R Foundation for Statistical Computing;
    • R Development Core Team R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2006.
    • (2006) R: A Language and Environment for Statistical Computing
  • 49
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: open software development for -computational biology and bioinformatics
    • Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for -computational biology and bioinformatics. Genome Biol. 2004; 5: R80.
    • (2004) Genome Biol , vol.5
    • Gentleman, R.C.1    Carey, V.J.2    Bates, D.M.3
  • 50
    • 75249089153 scopus 로고    scopus 로고
    • The gputools package enables GPU computing in R
    • Buckner J, Wilson J, Seligman M, et al. The gputools package enables GPU computing in R. Bioinformatics. 2010; 26(1): 134-135.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 134-135
    • Buckner, J.1    Wilson, J.2    Seligman, M.3
  • 51
    • 77953494008 scopus 로고    scopus 로고
    • permGPU: using graphics processing units in RNA microarray association studies
    • Shterev ID, Jung SH, George SL, et al. permGPU: using graphics processing units in RNA microarray association studies. BMC Bioinformatics. 2010; 11(329).
    • (2010) BMC Bioinformatics , vol.11 , Issue.329
    • Shterev, I.D.1    Jung, S.H.2    George, S.L.3
  • 52
    • 0004221707 scopus 로고
    • California: Stanford University Center for the Study of Language and Information;
    • Knuth DE. Literate Programming. California: Stanford University Center for the Study of Language and Information; 1992.
    • (1992) Literate Programming
    • Knuth, D.E.1
  • 57
    • 57149094101 scopus 로고    scopus 로고
    • Hahne F, Huber W, Gentleman R, et al. eds. New York: Springer Verlag;
    • Hahne F, Huber W, Gentleman R, et al. eds. Bioconductor Case Studies. New York: Springer Verlag; 2008.
    • (2008) Bioconductor Case Studies


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.