-
1
-
-
36448967787
-
A combined component approach for finding collection-adapted ranking functions based on genetic programming
-
H. M. D. Almeida, M. A. Concalves, M. Cristo, and P. Calado. A combined component approach for finding collection-adapted ranking functions based on genetic programming. ACM SIGIR, pages 399-406, 2007.
-
(2007)
ACM SIGIR
, pp. 399-406
-
-
Almeida, H.M.D.1
Concalves, M.A.2
Cristo, M.3
Calado, P.4
-
5
-
-
36448945038
-
A semantic approach to contextual advertising
-
A. Z. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to contextual advertising. SIGIR, pages 559-566, 2007.
-
(2007)
SIGIR
, pp. 559-566
-
-
Broder, A.Z.1
Fontoura, M.2
Josifovski, V.3
Riedel, L.4
-
6
-
-
31844446958
-
Learning to rank using gradient descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to rank using gradient descent. ICML, pages 89-96, 2005.
-
(2005)
ICML
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
7
-
-
84864039510
-
Learning to rank with nonsmooth cost functions
-
C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. NIPS, pages 193-200, 2006.
-
(2006)
NIPS
, pp. 193-200
-
-
Burges, C.J.1
Ragno, R.2
Le, Q.V.3
-
8
-
-
33750338615
-
Adapting ranking svm to document retrieval
-
Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W. Hon. Adapting ranking svm to document retrieval. ACM SIGIR, pages 186-193, 2006.
-
(2006)
ACM SIGIR
, pp. 186-193
-
-
Cao, Y.1
Xu, J.2
Liu, T.-Y.3
Li, H.4
Huang, Y.5
Hon, H.-W.6
-
9
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise approach. ICML, pages 129-136, 2007.
-
(2007)
ICML
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
10
-
-
57349199269
-
Contextual advertising by combining relevance with click feedback
-
D. Chakrabarti, D. Agrawal, and V. Josifovski. Contextual advertising by combining relevance with click feedback. WWW, pages 416-426, 2008.
-
(2008)
WWW
, pp. 416-426
-
-
Chakrabarti, D.1
Agrawal, D.2
Josifovski, V.3
-
11
-
-
77953642308
-
Gradient descent optimization of smoothed information retrieval metrics
-
O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval metrics. IR Journal, pages 13(3):201-215, 2010.
-
(2010)
IR Journal
, vol.13
, Issue.3
, pp. 201-215
-
-
Chapelle, O.1
Wu, M.2
-
12
-
-
33746084489
-
Subset ranking using regression
-
D. Cossock and T. Zhang. Subset ranking using regression. CoLT, pages 605-619, 2006.
-
(2006)
CoLT
, pp. 605-619
-
-
Cossock, D.1
Zhang, T.2
-
15
-
-
36448961557
-
Frank: A ranking method with fidelity loss
-
M. feng Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. Frank: A ranking method with fidelity loss. ACM SIGIR, pages 383-390, 2007.
-
(2007)
ACM SIGIR
, pp. 383-390
-
-
Tsai, M.F.1
Liu, T.-Y.2
Qin, T.3
Chen, H.-H.4
Ma, W.-Y.5
-
17
-
-
0842290958
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. ICML, pages 170-178, 1998.
-
(1998)
ICML
, pp. 170-178
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
20
-
-
77955987470
-
High performance object detection by collaborative learning of joint ranking of granules features
-
C. Huang and R. Nevatia. High performance object detection by collaborative learning of joint ranking of granules features. CVPR, pages 41-48, 2010.
-
(2010)
CVPR
, pp. 41-48
-
-
Huang, C.1
Nevatia, R.2
-
21
-
-
0033645041
-
Ir evaluation methods for retrieving highly relevant documents
-
K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. ACM SIGIR, pages 41-48, 2000.
-
(2000)
ACM SIGIR
, pp. 41-48
-
-
Jarvelin, K.1
Kekalainen, J.2
-
22
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
T. Joachims. Optimizing search engines using clickthrough data. ACM KDD, pages 133-142, 2002.
-
(2002)
ACM KDD
, pp. 133-142
-
-
Joachims, T.1
-
24
-
-
33750344115
-
Learning to advertise
-
A. Lacerda, M. Cristo, M. Goncalves, W. Fan, N. Ziviani, and B. Ribeiro-Neto. Learning to advertise. ACM SIGIR, pages 549-556, 2006.
-
(2006)
ACM SIGIR
, pp. 549-556
-
-
Lacerda, A.1
Cristo, M.2
Goncalves, M.3
Fan, W.4
Ziviani, N.5
Ribeiro-Neto, B.6
-
25
-
-
57649092193
-
Learning to rank using multiple classification and gradient boosting
-
P. Li, C. J. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. NIPS, 2007.
-
(2007)
NIPS
-
-
Li, P.1
Burges, C.J.2
Mcrank, Q.Wu.3
-
27
-
-
84873420133
-
Benchmark dataset for research on learning to rank for information retrieval
-
T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. SIGIR-LTR, 2007.
-
(2007)
SIGIR-LTR
-
-
Liu, T.-Y.1
Xu, J.2
Qin, T.3
Xiong, W.4
Letor, H.Li.5
-
28
-
-
0035014159
-
Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters
-
A. V. Lukashin and R. Fuchs. Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics, pages 405-414, 2000.
-
(2000)
Bioinformatics
, pp. 405-414
-
-
Lukashin, A.V.1
Fuchs, R.2
-
29
-
-
5744249209
-
Equation of state calculation by fast computing machines
-
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculation by fast computing machines. J. Of Chem. Phys., pages 1087-1091, 1953.
-
(1953)
J. of Chem. Phys.
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
30
-
-
57349088301
-
A noisy-channel approach to contextual advertising
-
V. Murdock, M. Ciaramita, and V. Plachouras. A noisy-channel approach to contextual advertising. ADKDD, pages 21-27, 2007.
-
(2007)
ADKDD
, pp. 21-27
-
-
Murdock, V.1
Ciaramita, M.2
Plachouras, V.3
-
31
-
-
8644231803
-
Discriminative models for information retrieval
-
R. Nallapati. Discriminative models for information retrieval. ACM SIGIR, pages 64-71, 2004.
-
(2004)
ACM SIGIR
, pp. 64-71
-
-
Nallapati, R.1
-
32
-
-
0000238336
-
A simplex method for function minimization
-
J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, pages (7):308-313, 1965.
-
(1965)
Computer Journal
, Issue.7
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
33
-
-
33749546453
-
Object-level ranking: Bringing order to web objects
-
Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level ranking: Bringing order to web objects. WWW, pages 567-574, 2005.
-
(2005)
WWW
, pp. 567-574
-
-
Nie, Z.1
Zhang, Y.2
Wen, J.-R.3
Ma, W.-Y.4
-
34
-
-
84866634755
-
Learning to select a ranking function
-
J. Peng, C. Macdonald, and I. Ounis. Learning to select a ranking function. ECIR, pages 111-126, 2010.
-
(2010)
ECIR
, pp. 111-126
-
-
Peng, J.1
Macdonald, C.2
Ounis, I.3
-
35
-
-
0032268440
-
A language modeling approach to information retrieval
-
J. Ponte and W. Croft. A language modeling approach to information retrieval. ACM SIGIR, pages 275-281, 1998.
-
(1998)
ACM SIGIR
, pp. 275-281
-
-
Ponte, J.1
Croft, W.2
-
36
-
-
50149110023
-
-
Technical Report
-
T. Qin, T.-Y. Liu, M. feng Tsai, X.-D. Zhang, and H. Li. Learning to search web pages with query-level loss functions. Technical Report, 2006.
-
(2006)
Learning to Search Web Pages with Query-level Loss Functions
-
-
Qin, T.1
Liu, T.-Y.2
Tsai, M.F.3
Zhang, X.-D.4
Li., H.5
-
37
-
-
84873471696
-
A hidden class page-ad probability model for contextual advertising
-
A. Ratnaparkhi. A hidden class page-ad probability model for contextual advertising. WWW Workshop, 2008.
-
(2008)
WWW Workshop
-
-
Ratnaparkhi, A.1
-
38
-
-
84873454473
-
Predicting click-through rate using keyword clusters
-
M. Regelson and D. Fian. Predicting click-through rate using keyword clusters. ACM EC, 2006.
-
(2006)
ACM EC
-
-
Regelson, M.1
Fian, D.2
-
39
-
-
84885668638
-
Impedance coupling in content-targeted advertising
-
B. Ribeiro-Neto, M. Cristo, P. Golgher, and E. S. D. Moura. Impedance coupling in content-targeted advertising. ACM SIGIR, pages 496-503, 2005.
-
(2005)
ACM SIGIR
, pp. 496-503
-
-
Ribeiro-Neto, B.1
Cristo, M.2
Golgher, P.3
Moura, E.S.D.4
-
40
-
-
35348840947
-
Predicting clicks: Estimating the click-through rate for new ads
-
M. Richardson, E. Dominowska, and R. Rango. Predicting clicks: Estimating the click-through rate for new ads. WWW, pages 521-530, 2007.
-
(2007)
WWW
, pp. 521-530
-
-
Richardson, M.1
Dominowska, E.2
Rango, R.3
-
42
-
-
84966534942
-
Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval
-
S. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. ACM SIGIR, pages 232-241, 1994.
-
(1994)
ACM SIGIR
, pp. 232-241
-
-
Robertson, S.1
Walker, S.2
-
43
-
-
45549117987
-
Term-weighting approaches in automatic text retrieval
-
G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing and Management, pages 24(5):513-523, 1988.
-
(1988)
Information Processing and Management
, vol.24
, Issue.5
, pp. 513-523
-
-
Salton, G.1
Buckley, C.2
-
44
-
-
42549161120
-
Softrank: Optimizing non-smooth rank metrics
-
M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. ACM WSDM, pages 77-86, 2008.
-
(2008)
ACM WSDM
, pp. 77-86
-
-
Taylor, M.1
Guiver, J.2
Robertson, S.3
Minka, T.4
-
46
-
-
71149095619
-
Boltzrank: Learning to maximize expected ranking gain
-
M. N. Volkovs and R. S. Zemel. Boltzrank: learning to maximize expected ranking gain. ICML, pages 1089-1096, 2009.
-
(2009)
ICML
, pp. 1089-1096
-
-
Volkovs, M.N.1
Zemel, R.S.2
-
47
-
-
36448954244
-
Adarank: A boosting algorithm for information retrieval
-
J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. ACM SIGIR, pages 391-398, 2007.
-
(2007)
ACM SIGIR
, pp. 391-398
-
-
Xu, J.1
Li, H.2
-
50
-
-
36448983903
-
A support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. ACM SIGIR, pages 271-278, 2007.
-
(2007)
ACM SIGIR
, pp. 271-278
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
|