메뉴 건너뛰기




Volumn , Issue , 2011, Pages 377-386

A stochastic learning-to-rank algorithm and its application to contextual advertising

Author keywords

Contextual advertising; IR measures; Learning to rank; NDCG; NDCG annealing; Simplex algorithm; Simulated annealing

Indexed keywords

CONTEXTUAL ADVERTISINGS; LEARNING TO RANK; NDCG; NDCG-ANNEALING; SIMPLEX ALGORITHM;

EID: 84455207062     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1963405.1963460     Document Type: Conference Paper
Times cited : (27)

References (50)
  • 1
    • 36448967787 scopus 로고    scopus 로고
    • A combined component approach for finding collection-adapted ranking functions based on genetic programming
    • H. M. D. Almeida, M. A. Concalves, M. Cristo, and P. Calado. A combined component approach for finding collection-adapted ranking functions based on genetic programming. ACM SIGIR, pages 399-406, 2007.
    • (2007) ACM SIGIR , pp. 399-406
    • Almeida, H.M.D.1    Concalves, M.A.2    Cristo, M.3    Calado, P.4
  • 4
    • 0032137160 scopus 로고    scopus 로고
    • Simulated annealing based pattern classification
    • S. Bandyopadhyay, S. K. Pal, and C. A. Murthy. Simulated annealing based pattern classification. Information Sciences, pages (109):165-184, 1998.
    • (1998) Information Sciences , Issue.109 , pp. 165-184
    • Bandyopadhyay, S.1    Pal, S.K.2    Murthy, C.A.3
  • 5
    • 36448945038 scopus 로고    scopus 로고
    • A semantic approach to contextual advertising
    • A. Z. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to contextual advertising. SIGIR, pages 559-566, 2007.
    • (2007) SIGIR , pp. 559-566
    • Broder, A.Z.1    Fontoura, M.2    Josifovski, V.3    Riedel, L.4
  • 7
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. J. Burges, R. Ragno, and Q. V. Le. Learning to rank with nonsmooth cost functions. NIPS, pages 193-200, 2006.
    • (2006) NIPS , pp. 193-200
    • Burges, C.J.1    Ragno, R.2    Le, Q.V.3
  • 9
    • 34547987951 scopus 로고    scopus 로고
    • Learning to rank: From pairwise approach to listwise approach
    • Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: From pairwise approach to listwise approach. ICML, pages 129-136, 2007.
    • (2007) ICML , pp. 129-136
    • Cao, Z.1    Qin, T.2    Liu, T.-Y.3    Tsai, M.-F.4    Li, H.5
  • 10
    • 57349199269 scopus 로고    scopus 로고
    • Contextual advertising by combining relevance with click feedback
    • D. Chakrabarti, D. Agrawal, and V. Josifovski. Contextual advertising by combining relevance with click feedback. WWW, pages 416-426, 2008.
    • (2008) WWW , pp. 416-426
    • Chakrabarti, D.1    Agrawal, D.2    Josifovski, V.3
  • 11
    • 77953642308 scopus 로고    scopus 로고
    • Gradient descent optimization of smoothed information retrieval metrics
    • O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval metrics. IR Journal, pages 13(3):201-215, 2010.
    • (2010) IR Journal , vol.13 , Issue.3 , pp. 201-215
    • Chapelle, O.1    Wu, M.2
  • 12
    • 33746084489 scopus 로고    scopus 로고
    • Subset ranking using regression
    • D. Cossock and T. Zhang. Subset ranking using regression. CoLT, pages 605-619, 2006.
    • (2006) CoLT , pp. 605-619
    • Cossock, D.1    Zhang, T.2
  • 17
    • 0842290958 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. ICML, pages 170-178, 1998.
    • (1998) ICML , pp. 170-178
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4
  • 20
    • 77955987470 scopus 로고    scopus 로고
    • High performance object detection by collaborative learning of joint ranking of granules features
    • C. Huang and R. Nevatia. High performance object detection by collaborative learning of joint ranking of granules features. CVPR, pages 41-48, 2010.
    • (2010) CVPR , pp. 41-48
    • Huang, C.1    Nevatia, R.2
  • 21
    • 0033645041 scopus 로고    scopus 로고
    • Ir evaluation methods for retrieving highly relevant documents
    • K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. ACM SIGIR, pages 41-48, 2000.
    • (2000) ACM SIGIR , pp. 41-48
    • Jarvelin, K.1    Kekalainen, J.2
  • 22
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. ACM KDD, pages 133-142, 2002.
    • (2002) ACM KDD , pp. 133-142
    • Joachims, T.1
  • 23
  • 25
    • 57649092193 scopus 로고    scopus 로고
    • Learning to rank using multiple classification and gradient boosting
    • P. Li, C. J. Burges, and Q. Wu. Mcrank: Learning to rank using multiple classification and gradient boosting. NIPS, 2007.
    • (2007) NIPS
    • Li, P.1    Burges, C.J.2    Mcrank, Q.Wu.3
  • 27
    • 84873420133 scopus 로고    scopus 로고
    • Benchmark dataset for research on learning to rank for information retrieval
    • T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. SIGIR-LTR, 2007.
    • (2007) SIGIR-LTR
    • Liu, T.-Y.1    Xu, J.2    Qin, T.3    Xiong, W.4    Letor, H.Li.5
  • 28
    • 0035014159 scopus 로고    scopus 로고
    • Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters
    • A. V. Lukashin and R. Fuchs. Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics, pages 405-414, 2000.
    • (2000) Bioinformatics , pp. 405-414
    • Lukashin, A.V.1    Fuchs, R.2
  • 30
    • 57349088301 scopus 로고    scopus 로고
    • A noisy-channel approach to contextual advertising
    • V. Murdock, M. Ciaramita, and V. Plachouras. A noisy-channel approach to contextual advertising. ADKDD, pages 21-27, 2007.
    • (2007) ADKDD , pp. 21-27
    • Murdock, V.1    Ciaramita, M.2    Plachouras, V.3
  • 31
    • 8644231803 scopus 로고    scopus 로고
    • Discriminative models for information retrieval
    • R. Nallapati. Discriminative models for information retrieval. ACM SIGIR, pages 64-71, 2004.
    • (2004) ACM SIGIR , pp. 64-71
    • Nallapati, R.1
  • 32
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • J. A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, pages (7):308-313, 1965.
    • (1965) Computer Journal , Issue.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 33
    • 33749546453 scopus 로고    scopus 로고
    • Object-level ranking: Bringing order to web objects
    • Z. Nie, Y. Zhang, J.-R. Wen, and W.-Y. Ma. Object-level ranking: Bringing order to web objects. WWW, pages 567-574, 2005.
    • (2005) WWW , pp. 567-574
    • Nie, Z.1    Zhang, Y.2    Wen, J.-R.3    Ma, W.-Y.4
  • 34
    • 84866634755 scopus 로고    scopus 로고
    • Learning to select a ranking function
    • J. Peng, C. Macdonald, and I. Ounis. Learning to select a ranking function. ECIR, pages 111-126, 2010.
    • (2010) ECIR , pp. 111-126
    • Peng, J.1    Macdonald, C.2    Ounis, I.3
  • 35
    • 0032268440 scopus 로고    scopus 로고
    • A language modeling approach to information retrieval
    • J. Ponte and W. Croft. A language modeling approach to information retrieval. ACM SIGIR, pages 275-281, 1998.
    • (1998) ACM SIGIR , pp. 275-281
    • Ponte, J.1    Croft, W.2
  • 37
    • 84873471696 scopus 로고    scopus 로고
    • A hidden class page-ad probability model for contextual advertising
    • A. Ratnaparkhi. A hidden class page-ad probability model for contextual advertising. WWW Workshop, 2008.
    • (2008) WWW Workshop
    • Ratnaparkhi, A.1
  • 38
    • 84873454473 scopus 로고    scopus 로고
    • Predicting click-through rate using keyword clusters
    • M. Regelson and D. Fian. Predicting click-through rate using keyword clusters. ACM EC, 2006.
    • (2006) ACM EC
    • Regelson, M.1    Fian, D.2
  • 40
    • 35348840947 scopus 로고    scopus 로고
    • Predicting clicks: Estimating the click-through rate for new ads
    • M. Richardson, E. Dominowska, and R. Rango. Predicting clicks: Estimating the click-through rate for new ads. WWW, pages 521-530, 2007.
    • (2007) WWW , pp. 521-530
    • Richardson, M.1    Dominowska, E.2    Rango, R.3
  • 42
    • 84966534942 scopus 로고
    • Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval
    • S. Robertson and S. Walker. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval. ACM SIGIR, pages 232-241, 1994.
    • (1994) ACM SIGIR , pp. 232-241
    • Robertson, S.1    Walker, S.2
  • 43
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing and Management, pages 24(5):513-523, 1988.
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 44
    • 42549161120 scopus 로고    scopus 로고
    • Softrank: Optimizing non-smooth rank metrics
    • M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank: optimizing non-smooth rank metrics. ACM WSDM, pages 77-86, 2008.
    • (2008) ACM WSDM , pp. 77-86
    • Taylor, M.1    Guiver, J.2    Robertson, S.3    Minka, T.4
  • 45
  • 46
    • 71149095619 scopus 로고    scopus 로고
    • Boltzrank: Learning to maximize expected ranking gain
    • M. N. Volkovs and R. S. Zemel. Boltzrank: learning to maximize expected ranking gain. ICML, pages 1089-1096, 2009.
    • (2009) ICML , pp. 1089-1096
    • Volkovs, M.N.1    Zemel, R.S.2
  • 47
    • 36448954244 scopus 로고    scopus 로고
    • Adarank: A boosting algorithm for information retrieval
    • J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. ACM SIGIR, pages 391-398, 2007.
    • (2007) ACM SIGIR , pp. 391-398
    • Xu, J.1    Li, H.2
  • 49
    • 84887859544 scopus 로고    scopus 로고
    • Learning to rank for information retrieval using genetic programming
    • J.-Y. Yeh, J.-Y. Lin, H.-R. Ke, and W.-P. Yang. Learning to rank for information retrieval using genetic programming. SIGIR-LTR Workshop, 2007.
    • (2007) SIGIR-LTR Workshop
    • Yeh, J.-Y.1    Lin, J.-Y.2    Ke, H.-R.3    Yang, W.-P.4
  • 50
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. ACM SIGIR, pages 271-278, 2007.
    • (2007) ACM SIGIR , pp. 271-278
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.