-
1
-
-
0024376173
-
ras oncogenes in human cancer: A review
-
Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989; 49:4682-9.
-
(1989)
Cancer Res
, vol.49
, pp. 4682-4689
-
-
Bos, J.L.1
-
2
-
-
0028074316
-
Phosphatidylinositol-3-OH kinase as a direct target of Ras
-
Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ, et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370:527-32; http://dx.doi.org/10.1038/370527a0
-
(1994)
Nature
, vol.370
, pp. 527-532
-
-
Rodriguez-Viciana, P.1
Warne, P.H.2
Dhand, R.3
Vanhaesebroeck, B.4
Gout, I.5
Fry, M.J.6
-
3
-
-
0027337248
-
Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1
-
Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS, et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364:308-13; http://dx.doi.org/10.1038/364308a0
-
(1993)
Nature
, vol.364
, pp. 308-313
-
-
Zhang, X.F.1
Settleman, J.2
Kyriakis, J.M.3
Takeuchi-Suzuki, E.4
Elledge, S.J.5
Marshall, M.S.6
-
4
-
-
0027263251
-
C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation
-
Han M, Golden A, Han Y, Sternberg PW. C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 1993; 363:133-40; http://dx.doi.org/10.1038/363133a0
-
(1993)
Nature
, vol.363
, pp. 133-140
-
-
Han, M.1
Golden, A.2
Han, Y.3
Sternberg, P.W.4
-
5
-
-
0027200883
-
Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro
-
Warne PH, Viciana PR, Downward J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 1993; 364:352-5; http://dx.doi.org/10.1038/364352a0
-
(1993)
Nature
, vol.364
, pp. 352-355
-
-
Warne, P.H.1
Viciana, P.R.2
Downward, J.3
-
6
-
-
0026647749
-
Raf-1 activates MAP kinasekinase
-
Kyriakis JM, App H, Zhang XF, Banerjee P, Brautigan DL, Rapp UR, et al. Raf-1 activates MAP kinasekinase. Nature 1992; 358:417-21; http://dx.doi.org/10.1038/358417a0
-
(1992)
Nature
, vol.358
, pp. 417-421
-
-
Kyriakis, J.M.1
App, H.2
Zhang, X.F.3
Banerjee, P.4
Brautigan, D.L.5
Rapp, U.R.6
-
7
-
-
0028153277
-
Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator
-
Hofer F, Fields S, Schneider C, Martin GS. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc Natl Acad Sci USA 1994; 91:11089-93; http://dx.doi.org/10.1073/pnas.91.23.11089
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 11089-11093
-
-
Hofer, F.1
Fields, S.2
Schneider, C.3
Martin, G.S.4
-
8
-
-
0028577298
-
Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap
-
Spaargaren M, Bischoff JR. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. Proc Natl Acad Sci USA 1994; 91:12609-13; http://dx.doi.org/10.1073/pnas.91.26.12609
-
(1994)
Proc Natl Acad Sci USA
, vol.91
, pp. 12609-12613
-
-
Spaargaren, M.1
Bischoff, J.R.2
-
9
-
-
0027986765
-
ralGDS family members interact with the effector loop of ras p21
-
Kikuchi A, Demo SD, Ye ZH, Chen YW, Williams LT. ralGDS family members interact with the effector loop of ras p21. Mol Cell Biol 1994; 14:7483-91.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 7483-7491
-
-
Kikuchi, A.1
Demo, S.D.2
Ye, Z.H.3
Chen, Y.W.4
Williams, L.T.5
-
10
-
-
77956171799
-
Ral activation promotes melanomagenesis
-
Zipfel PA, Brady DC, Kashatus DF, Ancrile BD, Tyler DS, Counter CM. Ral activation promotes melanomagenesis. Oncogene 2010; 29:4859-64; http://dx.doi.org/10.1038/onc.2010.224
-
(2010)
Oncogene
, vol.29
, pp. 4859-4864
-
-
Zipfel, P.A.1
Brady, D.C.2
Kashatus, D.F.3
Ancrile, B.D.4
Tyler, D.S.5
Counter, C.M.6
-
11
-
-
78651380816
-
Activation and involvement of Ral GTPases in colorectal cancer
-
Martin TD, Samuel JC, Routh ED, Der CJ, Yeh JJ. Activation and involvement of Ral GTPases in colorectal cancer. Cancer Res 2011; 71:206-15; http://dx.doi.org/10.1158/0008-5472.CAN-10-1517
-
(2011)
Cancer Res
, vol.71
, pp. 206-215
-
-
Martin, T.D.1
Samuel, J.C.2
Routh, E.D.3
Der, C.J.4
Yeh, J.J.5
-
12
-
-
78449292864
-
Phosphorylation of RalB is important for bladder cancer cell growth and metastasis
-
Wang H, Owens C, Chandra N, Conaway MR, Brautigan DL, Theodorescu D. Phosphorylation of RalB is important for bladder cancer cell growth and metastasis. Cancer Res 2010; 70:8760-9; http://dx.doi.org/10.1158/0008-5472.CAN-10-0952
-
(2010)
Cancer Res
, vol.70
, pp. 8760-8769
-
-
Wang, H.1
Owens, C.2
Chandra, N.3
Conaway, M.R.4
Brautigan, D.L.5
Theodorescu, D.6
-
13
-
-
20444410041
-
Activation of RalA is critical for Ras-induced tumorigenesis of human cells
-
Lim K-H, Baines AT, Fiordalisi JJ, Shipitsin M, Feig LA, Cox AD, et al. Activation of RalA is critical for Ras-induced tumorigenesis of human cells. Cancer Cell 2005; 7:533-45; http://dx.doi.org/10.1016/j.ccr.2005.04.030
-
(2005)
Cancer Cell
, vol.7
, pp. 533-545
-
-
Lim, K.-H.1
Baines, A.T.2
Fiordalisi, J.J.3
Shipitsin, M.4
Feig, L.A.5
Cox, A.D.6
-
14
-
-
0042353628
-
RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival
-
Chien Y, White MA. RAL GTPases are linchpin modulators of human tumour-cell proliferation and survival. EMBO Rep 2003; 4:800-6; http://dx.doi.org/10.1038/sj.embor.embor899
-
(2003)
EMBO Rep
, vol.4
, pp. 800-806
-
-
Chien, Y.1
White, M.A.2
-
15
-
-
17644408725
-
RalGDS is required for tumor formation in a model of skin carcinogenesis
-
González-García A, Pritchard CA, Paterson HF, Mavria G, Stamp G, Marshall CJ. RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 2005; 7:219-26; http://dx.doi.org/10.1016/j.ccr.2005.01.029
-
(2005)
Cancer Cell
, vol.7
, pp. 219-226
-
-
González-García, A.1
Pritchard, C.A.2
Paterson, H.F.3
Mavria, G.4
Stamp, G.5
Marshall, C.J.6
-
16
-
-
4344642864
-
The Rgr oncogene induces tumorigenesis in transgenic mice
-
Jiménez M, Pérez de Castro I, Benet M, García JF, Inghirami G, Pellicer A. The Rgr oncogene induces tumorigenesis in transgenic mice. Cancer Res 2004; 64:6041-9; http://dx.doi.org/10.1158/0008-5472.CAN-03-3389
-
(2004)
Cancer Res
, vol.64
, pp. 6041-6049
-
-
Jiménez, M.1
Pérez de Castro, I.2
Benet, M.3
García, J.F.4
Inghirami, G.5
Pellicer, A.6
-
17
-
-
38849147752
-
Ral GTPases and cancer: Linchpin support of the tumorigenic platform
-
Bodemann BO, White MA. Ral GTPases and cancer: linchpin support of the tumorigenic platform. Nat Rev Cancer 2008; 8:133-40; http://dx.doi.org/10.1038/nrc2296
-
(2008)
Nat Rev Cancer
, vol.8
, pp. 133-140
-
-
Bodemann, B.O.1
White, M.A.2
-
18
-
-
0037102561
-
Distinct requirements for Ras oncogenesis in human versus mouse cells
-
Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, et al. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002; 16:2045-57; http://dx.doi.org/10.1101/gad.993902
-
(2002)
Genes Dev
, vol.16
, pp. 2045-2057
-
-
Hamad, N.M.1
Elconin, J.H.2
Karnoub, A.E.3
Bai, W.4
Rich, J.N.5
Abraham, R.T.6
-
19
-
-
79960069763
-
The RalGEF-Ral Effector Signaling Network: The Road Less Traveled for Anti-Ras Drug Discovery
-
Neel NF, Martin TD, Stratford JK, Zand TP, Reiner DJ, Der CJ. The RalGEF-Ral Effector Signaling Network: The Road Less Traveled for Anti-Ras Drug Discovery. Genes Cancer 2011; 2:275-87; http://dx.doi.org/10.1177/1947601911407329
-
(2011)
Genes Cancer
, vol.2
, pp. 275-287
-
-
Neel, N.F.1
Martin, T.D.2
Stratford, J.K.3
Zand, T.P.4
Reiner, D.J.5
Der, C.J.6
-
20
-
-
0036141393
-
The exocyst is a Ral effector complex
-
Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA. The exocyst is a Ral effector complex. Nat Cell Biol 2002; 4:66-72; http://dx.doi.org/10.1038/ncb728
-
(2002)
Nat Cell Biol
, vol.4
, pp. 66-72
-
-
Moskalenko, S.1
Henry, D.O.2
Rosse, C.3
Mirey, G.4
Camonis, J.H.5
White, M.A.6
-
21
-
-
0036141434
-
The exocyst complex binds the small GTPase RalA to mediate filopodia formation
-
Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 2002; 4:73-8; http://dx.doi.org/10.1038/ncb720
-
(2002)
Nat Cell Biol
, vol.4
, pp. 73-78
-
-
Sugihara, K.1
Asano, S.2
Tanaka, K.3
Iwamatsu, A.4
Okawa, K.5
Ohta, Y.6
-
22
-
-
0346154744
-
Ral GTPases regulate exocyst assembly through dual subunit interactions
-
Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, et al. Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 2003; 278:51743-8; http://dx.doi.org/10.1074/jbc.M308702200
-
(2003)
J Biol Chem
, vol.278
, pp. 51743-51748
-
-
Moskalenko, S.1
Tong, C.2
Rosse, C.3
Mirey, G.4
Formstecher, E.5
Daviet, L.6
-
23
-
-
0029001797
-
Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases
-
Cantor SB, Urano T, Feig LA. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol 1995; 15:4578-84.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4578-4584
-
-
Cantor, S.B.1
Urano, T.2
Feig, L.A.3
-
24
-
-
0033514510
-
The small GTPase RalA targets filamin to induce filopodia
-
Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP. The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 1999; 96:2122-8; http://dx.doi.org/10.1073/pnas.96.5.2122
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 2122-2128
-
-
Ohta, Y.1
Suzuki, N.2
Nakamura, S.3
Hartwig, J.H.4
Stossel, T.P.5
-
25
-
-
13244260780
-
RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity
-
Frankel P, Aronheim A, Kavanagh E, Balda MS, Matter K, Bunney TD, et al. RalA interacts with ZONAB in a cell density-dependent manner and regulates its transcriptional activity. EMBO J 2005; 24:54-62; http://dx.doi.org/10.1038/sj.emboj.7600497
-
(2005)
EMBO J
, vol.24
, pp. 54-62
-
-
Frankel, P.1
Aronheim, A.2
Kavanagh, E.3
Balda, M.S.4
Matter, K.5
Bunney, T.D.6
-
26
-
-
0024412469
-
Coding sequences of human ralA and ralB cDNAs
-
Chardin P, Tavitian A. Coding sequences of human ralA and ralB cDNAs. Nucleic Acids Res 1989; 17:4380; http://dx.doi.org/10.1093/nar/17.11.4380
-
(1989)
Nucleic Acids Res
, vol.17
, pp. 4380
-
-
Chardin, P.1
Tavitian, A.2
-
27
-
-
33845448647
-
Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells
-
Lim K-H, O'Hayer K, Adam SJ, Kendall SD, Campbell PM, Der CJ, et al. Divergent roles for RalA and RalB in malignant growth of human pancreatic carcinoma cells. Curr Biol 2006; 16:2385-94; http://dx.doi.org/10.1016/j.cub.2006.10.023
-
(2006)
Curr Biol
, vol.16
, pp. 2385-2394
-
-
Lim, K.-H.1
O'Hayer, K.2
Adam, S.J.3
Kendall, S.D.4
Campbell, P.M.5
Der, C.J.6
-
28
-
-
33749165933
-
RalB GTPase-Mediated Activation of the IkappaB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival
-
Chien Y, Kim S, Bumeister R, Loo YM, Kwon SW, Johnson CL, et al. RalB GTPase-Mediated Activation of the IkappaB Family Kinase TBK1 Couples Innate Immune Signaling to Tumor Cell Survival. Cell 2006; 127:157-70; http://dx.doi.org/10.1016/j.cell.2006.08.034
-
(2006)
Cell
, vol.127
, pp. 157-170
-
-
Chien, Y.1
Kim, S.2
Bumeister, R.3
Loo, Y.M.4
Kwon, S.W.5
Johnson, C.L.6
-
29
-
-
2942711520
-
RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells
-
Shipitsin M, Feig LA. RalA but not RalB enhances polarized delivery of membrane proteins to the basolateral surface of epithelial cells. Mol Cell Biol 2004; 24:5746-56; http://dx.doi.org/10.1128/MCB.24.13.5746-5756.2004
-
(2004)
Mol Cell Biol
, vol.24
, pp. 5746-5756
-
-
Shipitsin, M.1
Feig, L.A.2
-
30
-
-
34249291096
-
The tumor suppressor PP2A Abeta regulates the RalA GTPase
-
Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, et al. The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell 2007; 129:969-82; http://dx.doi.org/10.1016/j.cell.2007.03.047
-
(2007)
Cell
, vol.129
, pp. 969-982
-
-
Sablina, A.A.1
Chen, W.2
Arroyo, J.D.3
Corral, L.4
Hector, M.5
Bulmer, S.E.6
-
31
-
-
20144373746
-
Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening
-
Wu J-C, Chen T-Y, Yu C-TR, Tsai S-J, Hsu J-M, Tang M-J, et al. Identification of V23RalA-Ser194 as a critical mediator for Aurora-A-induced cellular motility and transformation by small pool expression screening. J Biol Chem 2005; 280:9013-22; http://dx.doi.org/10.1074/jbc.M411068200
-
(2005)
J Biol Chem
, vol.280
, pp. 9013-9022
-
-
Wu, J.-C.1
Chen, T.-Y.2
Yu, C.-T.R.3
Tsai, S.-J.4
Hsu, J.-M.5
Tang, M.-J.6
-
32
-
-
32444441115
-
PKC regulates a farnesylelectrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis
-
Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A, et al. PKC regulates a farnesylelectrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 2006; 21:481-93; http://dx.doi.org/10.1016/j.molcel.2006.01.012
-
(2006)
Mol Cell
, vol.21
, pp. 481-493
-
-
Bivona, T.G.1
Quatela, S.E.2
Bodemann, B.O.3
Ahearn, I.M.4
Soskis, M.J.5
Mor, A.6
-
33
-
-
51649095569
-
The Aurora kinase family in cell division and cancer
-
Vader G, Lens S. The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 2008; 1786:60-72.
-
(2008)
Biochim Biophys Acta
, vol.1786
, pp. 60-72
-
-
Vader, G.1
Lens, S.2
-
34
-
-
73549119929
-
Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA
-
Lim K-H, Brady DC, Kashatus DF, Ancrile BB, Der CJ, Cox AD, et al. Aurora-A phosphorylates, activates, and relocalizes the small GTPase RalA. Mol Cell Biol 2010; 30:508-23; http://dx.doi.org/10.1128/MCB.00916-08
-
(2010)
Mol Cell Biol
, vol.30
, pp. 508-523
-
-
Lim, K.-H.1
Brady, D.C.2
Kashatus, D.F.3
Ancrile, B.B.4
Der, C.J.5
Cox, A.D.6
-
35
-
-
80052514798
-
RALA and RALBP1 regulate mitochondrial fission at mitosis
-
Kashatus DF, Lim K-H, Brady DC, Pershing NLK, Cox AD, Counter CM. RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat Cell Biol 2011; 13:1-10; http://dx.doi.org/10.1038/ncb2310
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1-10
-
-
Kashatus, D.F.1
Lim, K.-H.2
Brady, D.C.3
Pershing, N.L.K.4
Cox, A.D.5
Counter, C.M.6
-
36
-
-
67650868959
-
Mitochondrial dynamics in mammalian health and disease
-
Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009; 89:799-845; http://dx.doi.org/10.1152/physrev.00030.2008
-
(2009)
Physiol Rev
, vol.89
, pp. 799-845
-
-
Liesa, M.1
Palacín, M.2
Zorzano, A.3
-
37
-
-
79952291364
-
Molecular mechanisms and physiologic functions of mitochondrial dynamics
-
Otera H, Mihara K. Molecular mechanisms and physiologic functions of mitochondrial dynamics. J Biochem 2011; 149:241-51; http://dx.doi.org/10.1093/jb/mvr002
-
(2011)
J Biochem
, vol.149
, pp. 241-251
-
-
Otera, H.1
Mihara, K.2
-
38
-
-
78649413837
-
Mitochondrial fusion and fission in cell life and death
-
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11:872-84; http://dx.doi.org/10.1038/nrm3013
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 872-884
-
-
Westermann, B.1
-
39
-
-
33748355640
-
Dynamics of mitochondria during the cell cycle
-
Arakaki N, Nishihama T, Owaki H, Kuramoto Y, Suenaga M, Miyoshi E, et al. Dynamics of mitochondria during the cell cycle. Biol Pharm Bull 2006; 29:1962-5; http://dx.doi.org/10.1248/bpb.29.1962
-
(2006)
Biol Pharm Bull
, vol.29
, pp. 1962-1965
-
-
Arakaki, N.1
Nishihama, T.2
Owaki, H.3
Kuramoto, Y.4
Suenaga, M.5
Miyoshi, E.6
-
40
-
-
67749089562
-
A hyperfused mitochondrial state achieved at G1-S regulates cyclin
-
Mitra K, Wunder C, Roysam B, Lin G, Lippincott- Schwartz J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc Natl Acad Sci USA 2009; 106:11960-5; http://dx.doi.org/10.1073/pnas.0904875106
-
(2009)
E Buildup and Entry Into S Phase. Proc Natl Acad Sci USA
, vol.106
, pp. 11960-11965
-
-
Mitra, K.1
Wunder, C.2
Roysam, B.3
Lin, G.4
Lippincott-Schwartz, J.5
-
41
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N, Ishihara N, Jofuku A, Oka T. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007; 282:11521-9; http://dx.doi.org/10.1074/jbc.M607279200
-
(2007)
J Biol Chem
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
Ishihara, N.2
Jofuku, A.3
Oka, T.4
-
42
-
-
0032100685
-
A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers
-
Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, et al. A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998; 17:3052-65; http://dx.doi.org/10.1093/emboj/17.11.3052
-
(1998)
EMBO J
, vol.17
, pp. 3052-3065
-
-
Bischoff, J.R.1
Anderson, L.2
Zhu, Y.3
Mossie, K.4
Ng, L.5
Souza, B.6
-
43
-
-
0042232500
-
RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis
-
Rossé C, L'Hoste S, Offner N, Picard A, Camonis J. RLIP, an effector of the Ral GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. J Biol Chem 2003; 278:30597-604; http://dx.doi.org/10.1074/jbc.M302191200
-
(2003)
J Biol Chem
, vol.278
, pp. 30597-305604
-
-
Rossé, C.1
L'Hoste, S.2
Offner, N.3
Picard, A.4
Camonis, J.5
-
44
-
-
0030919992
-
Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma
-
Fukushige S, Waldman FM, Kimura M, Abe T, Furukawa T, Sunamura M, et al. Frequent gain of copy number on the long arm of chromosome 20 in human pancreatic adenocarcinoma. Genes Chromosomes Cancer 1997; 19:161-9; http://dx.doi.org/10.1002/(SICI)1098-2264(199707)19:3,161::AID-GCC5.3.0.CO;2-W
-
(1997)
Genes Chromosomes Cancer
, vol.19
, pp. 161-169
-
-
Fukushige, S.1
Waldman, F.M.2
Kimura, M.3
Abe, T.4
Furukawa, T.5
Sunamura, M.6
-
45
-
-
0037343237
-
Overexpression of oncogenic STK15/ BTAK/Aurora A kinase in human pancreatic cancer
-
Li D, Zhu J, Firozi PF, Abbruzzese JL, Evans DB, Cleary K, et al. Overexpression of oncogenic STK15/ BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res 2003; 9:991-7.
-
(2003)
Clin Cancer Res
, vol.9
, pp. 991-997
-
-
Li, D.1
Zhu, J.2
Firozi, P.F.3
Abbruzzese, J.L.4
Evans, D.B.5
Cleary, K.6
-
46
-
-
67650095150
-
Ral overactivation in malignant peripheral nerve sheath tumors
-
Bodempudi V, Yamoutpoor F, Pan W, Dudek AZ, Esfandyari T, Piedra M, et al. Ral overactivation in malignant peripheral nerve sheath tumors. Mol Cell Biol 2009; 29:3964-74; http://dx.doi.org/10.1128/MCB.01153-08
-
(2009)
Mol Cell Biol
, vol.29
, pp. 3964-3974
-
-
Bodempudi, V.1
Yamoutpoor, F.2
Pan, W.3
Dudek, A.Z.4
Esfandyari, T.5
Piedra, M.6
-
47
-
-
0037168163
-
Involvement of R-Ras and Ral GTPases in estrogen-independent proliferation of breast cancer cells
-
Yu Y, Feig LA. Involvement of R-Ras and Ral GTPases in estrogen-independent proliferation of breast cancer cells. Oncogene 2002; 21:7557-68; http://dx.doi.org/10.1038/sj.onc.1205961
-
(2002)
Oncogene
, vol.21
, pp. 7557-7568
-
-
Yu, Y.1
Feig, L.A.2
-
48
-
-
41149170743
-
MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases
-
Okada T, Sawada T, Osawa T, Adachi M, Kubota K. MK615 inhibits pancreatic cancer cell growth by dual inhibition of Aurora A and B kinases. World J Gastroenterol 2008; 14:1378-82; http://dx.doi.org/10.3748/wjg.14.1378
-
(2008)
World J Gastroenterol
, vol.14
, pp. 1378-1382
-
-
Okada, T.1
Sawada, T.2
Osawa, T.3
Adachi, M.4
Kubota, K.5
-
49
-
-
16844366286
-
RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells
-
Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N, et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer Res 2005; 65:2899-905; http://dx.doi.org/10.1158/0008-5472.CAN-04-3981
-
(2005)
Cancer Res
, vol.65
, pp. 2899-2905
-
-
Hata, T.1
Furukawa, T.2
Sunamura, M.3
Egawa, S.4
Motoi, F.5
Ohmura, N.6
-
50
-
-
78049370949
-
Aberrant overexpression of the Rgl2 Ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through Raldependent and Ral-independent mechanisms
-
Vigil D, Martin TD, Williams F, Yeh JJ, Campbell SL, Der CJ. Aberrant overexpression of the Rgl2 Ral small GTPase-specific guanine nucleotide exchange factor promotes pancreatic cancer growth through Raldependent and Ral-independent mechanisms. J Biol Chem 2010; 285:34729-40; http://dx.doi.org/10.1074/jbc.M110.116756
-
(2010)
J Biol Chem
, vol.285
, pp. 34729-34740
-
-
Vigil, D.1
Martin, T.D.2
Williams, F.3
Yeh, J.J.4
Campbell, S.L.5
Der, C.J.6
-
51
-
-
35648970538
-
Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone
-
Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M, et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 2007; 27:7538-50; http://dx.doi.org/10.1128/MCB.00955-07
-
(2007)
Mol Cell Biol
, vol.27
, pp. 7538-7550
-
-
Yin, J.1
Pollock, C.2
Tracy, K.3
Chock, M.4
Martin, P.5
Oberst, M.6
-
52
-
-
79551527692
-
RalA function in dermal fibroblasts is required for the progression of squamous cell carcinoma of the skin
-
Sowalsky AG, Alt-Holland A, Shamis Y, Garlick JA, Feig LA. RalA function in dermal fibroblasts is required for the progression of squamous cell carcinoma of the skin. Cancer Res 2011; 71:758-67; http://dx.doi.org/10.1158/0008-5472.CAN-10-2756
-
(2011)
Cancer Res
, vol.71
, pp. 758-767
-
-
Sowalsky, A.G.1
Alt-Holland, A.2
Shamis, Y.3
Garlick, J.A.4
Feig, L.A.5
-
53
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes LC, Benedetto GD, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13:589-98; http://dx.doi.org/10.1038/ncb2220
-
(2011)
Nat Cell Biol
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Benedetto, G.D.2
Scorrano, L.3
-
54
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold AS, Kostelecky B, Elia N, Lippincott- Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 2011; 108:10190-5; http://dx.doi.org/10.1073/pnas.1107402108
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
56
-
-
77951096150
-
Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
-
Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18:R169-76; http://dx.doi.org/10.1093/hmg/ddp326
-
(2009)
Hum Mol Genet
, vol.18
-
-
Chen, H.1
Chan, D.C.2
-
57
-
-
78149359813
-
Mitochondrial fission/fusion dynamics and apoptosis
-
Sheridan C, Martin SJ. Mitochondrial fission/fusion dynamics and apoptosis. Mitochondrion 2010; 10:640-8; http://dx.doi.org/10.1016/j.mito.2010.08.005
-
(2010)
Mitochondrion
, vol.10
, pp. 640-648
-
-
Sheridan, C.1
Martin, S.J.2
-
58
-
-
68149100711
-
The changing shape of mitochondrial apoptosis
-
Wasilewski M, Scorrano L. The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 2009; 20:287-94; http://dx.doi.org/10.1016/j.tem.2009.03.007
-
(2009)
Trends Endocrinol Metab
, vol.20
, pp. 287-294
-
-
Wasilewski, M.1
Scorrano, L.2
-
59
-
-
23144451432
-
Mitochondrial fission in apoptosis
-
Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005; 6:657-63; http://dx.doi.org/10.1038/nrm1697
-
(2005)
Nat Rev Mol Cell Biol
, vol.6
, pp. 657-663
-
-
Youle, R.J.1
Karbowski, M.2
-
60
-
-
77956230098
-
Mitochondrial shape changes: Orchestrating cell pathophysiology
-
Campello S, Scorrano L. Mitochondrial shape changes: orchestrating cell pathophysiology. EMBO Rep 2010; 11:678-84; http://dx.doi.org/10.1038/embor.2010.115
-
(2010)
EMBO Rep
, vol.11
, pp. 678-684
-
-
Campello, S.1
Scorrano, L.2
-
61
-
-
52449134835
-
Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA
-
Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 2008; 3:e3257; http://dx.doi.org/10.1371/journal.pone.0003257
-
(2008)
PLoS ONE
, vol.3
-
-
Parone, P.A.1
da Cruz, S.2
Tondera, D.3
Mattenberger, Y.4
James, D.I.5
Maechler, P.6
-
62
-
-
78651232227
-
miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1
-
Wang J-X, Jiao J-Q, Li Q, Long B, Wang K, Liu J-P, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 2011; 17:71-8; http://dx.doi.org/10.1038/nm.2282
-
(2011)
Nat Med
, vol.17
, pp. 71-78
-
-
Wang, J.-X.1
Jiao, J.-Q.2
Li, Q.3
Long, B.4
Wang, K.5
Liu, J.-P.6
-
63
-
-
79955630003
-
Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment
-
Arismendi-Morillo G. Electron microscopy morphology of the mitochondrial network in gliomas and their vascular microenvironment. Biochim Biophys Acta 2011; 1807:602-8.
-
(2011)
Biochim Biophys Acta
, vol.1807
, pp. 602-608
-
-
Arismendi-Morillo, G.1
-
64
-
-
78651488777
-
RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly
-
Bodemann BO, Orvedahl A, Cheng T, Ram RR, Ou Y-H, Formstecher E, et al. RalB and the exocyst mediate the cellular starvation response by direct activation of autophagosome assembly. Cell 2011; 144:253-67; http://dx.doi.org/10.1016/j.cell.2010.12.018
-
(2011)
Cell
, vol.144
, pp. 253-267
-
-
Bodemann, B.O.1
Orvedahl, A.2
Cheng, T.3
Ram, R.R.4
Ou, Y.-H.5
Formstecher, E.6
-
65
-
-
78649474147
-
Ras history: The saga continues
-
Cox AD. Ras history: The saga continues. Small GTPases 2010; 1:2-27; http://dx.doi.org/10.4161/sgtp.1.1.12178
-
(2010)
Small GTPases
, vol.1
, pp. 2-27
-
-
Cox, A.D.1
-
66
-
-
38849099158
-
Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/ Bak-dependent mitochondrial outer membrane permeabilization
-
Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/ Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 2008; 14:193-204; http://dx.doi.org/10.1016/j.devcel.2007.11.019
-
(2008)
Dev Cell
, vol.14
, pp. 193-204
-
-
Cassidy-Stone, A.1
Chipuk, J.E.2
Ingerman, E.3
Song, C.4
Yoo, C.5
Kuwana, T.6
-
67
-
-
70149097538
-
The molecular machinery of mitochondrial fusion and fission: An opportunity for drug discovery?
-
Zorzano A, Sebastián D, Segalés J, Palacín M. The molecular machinery of mitochondrial fusion and fission: An opportunity for drug discovery? Curr Opin Drug Discov Devel 2009; 12:597-606.
-
(2009)
Curr Opin Drug Discov Devel
, vol.12
, pp. 597-606
-
-
Zorzano, A.1
Sebastián, D.2
Segalés, J.3
Palacín, M.4
|