메뉴 건너뛰기




Volumn 22, Issue 12 PART 1, 2011, Pages 1878-1891

Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization

Author keywords

Divergence; matrix factorization; multiplicative; nonnegative; optimization

Indexed keywords

AUXILIARY FUNCTIONS; CONVENTIONAL METHODS; DISSIMILARITY MEASURES; DIVERGENCE; GENERAL APPROACH; KARUSH KUHN TUCKERS; MATRIX; MATRIX FACTORIZATIONS; MULTIPLICATIVE; MULTIPLICATIVE UPDATES; NONNEGATIVE; NONNEGATIVE MATRIX FACTORIZATION; NONSEPARABLE; NUMERICAL EXPERIMENTS; OBJECTIVE FUNCTIONS; OPTIMALITY; SECOND ORDERS;

EID: 83855163513     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2011.2170094     Document Type: Article
Times cited : (66)

References (47)
  • 1
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 2
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Apr.
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Proc. Adv. Neural Inf. Process. Syst., vol. 13. Apr. 2001, pp. 556-562.
    • (2001) Proc. Adv. Neural Inf. Process. Syst. , vol.13 , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 3
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Nov.
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 4
    • 33847655586 scopus 로고    scopus 로고
    • A generalized divergence measure for nonnegative matrix factorization
    • Mar.
    • R. Kompass, "A generalized divergence measure for nonnegative matrix factorization," Neural Comput., vol. 19, no. 3, pp. 780-791, Mar. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.3 , pp. 780-791
    • Kompass, R.1
  • 5
    • 84864031935 scopus 로고    scopus 로고
    • Generalized nonnegative matrix approximations with Bregman divergences
    • I. S. Dhillon and S. Sra, "Generalized nonnegative matrix approximations with Bregman divergences," in Proc. Adv. Neural Inf. Process. Syst., vol. 18. 2006, pp. 283-290.
    • (2006) Proc. Adv. Neural Inf. Process. Syst. , vol.18 , pp. 283-290
    • Dhillon, I.S.1    Sra, S.2
  • 6
    • 43249131130 scopus 로고    scopus 로고
    • Non-negative matrix factorization with α-divergence
    • Feb.
    • A. Cichocki, H. Lee, Y.-D. Kim, and S. Choi, "Non-negative matrix factorization with α-divergence," Pattern Recognit. Lett., vol. 29, pp. 1433-1440, Feb. 2008.
    • (2008) Pattern Recognit. Lett. , vol.29 , pp. 1433-1440
    • Cichocki, A.1    Lee, H.2    Kim, Y.-D.3    Choi, S.4
  • 7
    • 56349098310 scopus 로고    scopus 로고
    • Algorithms for orthogonal nonnegative matrix factorization
    • Hong Kong, Jun.
    • S. Choi, "Algorithms for orthogonal nonnegative matrix factorization," in Proc. IEEE Int. Joint Conf. Neural Netw., Hong Kong, Jun. 2008, pp. 1828-1832.
    • (2008) Proc.IEEE Int. Joint Conf. Neural Netw , pp. 1828-1832
    • Choi, S.1
  • 8
    • 63249085556 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis
    • Mar.
    • C. Févotte, N. Bertin, and J.-L. Durrieu, "Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis," Neural Comput., vol. 21, no. 3, pp. 793-830, Mar. 2009.
    • (2009) Neural Comput. , vol.21 , Issue.3 , pp. 793-830
    • Févotte, C.1    Bertin, N.2    Durrieu, J.-L.3
  • 9
    • 84871617105 scopus 로고    scopus 로고
    • Convex and semi-nonnegative matrix factorizations
    • Jan.
    • C. Ding, T. Li, and M. I. Jordan, "Convex and semi-nonnegative matrix factorizations," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 1, pp. 45-55, Jan. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.1 , pp. 45-55
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 11
    • 0141815618 scopus 로고    scopus 로고
    • Discovering hierarchical speech features using convolu-tional non-negative matrix factorization
    • S. Behnke, "Discovering hierarchical speech features using convolu-tional non-negative matrix factorization," in Proc. Int. Joint Conf. Neural Netw., vol. 4. 2003, pp. 2758-2763.
    • (2003) Proc. Int. Joint Conf. Neural Netw. , vol.4 , pp. 2758-2763
    • Behnke, S.1
  • 12
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • DOI 10.1093/bioinformatics/btm134
    • H. Kim and H. Park, "Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis," Bioinformatics, vol. 23, no. 12, pp. 1495-1502, May 2007. (Pubitemid 47244474)
    • (2007) Bioinformatics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 13
    • 38349054314 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization using projected gradient approaches
    • A. Cichocki and R. Zdunek, "Multilayer nonnegative matrix factorization using projected gradient approaches," Int. J. Neural Syst., vol. 17, no. 6, pp. 431-446, 2007.
    • (2007) Int. J. Neural Syst. , vol.17 , Issue.6 , pp. 431-446
    • Cichocki, A.1    Zdunek, R.2
  • 15
    • 35548969471 scopus 로고    scopus 로고
    • Projected gradient methods for nonnegative matrix factorization
    • Oct.
    • C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization," Neural Comput., vol. 19, no. 10, pp. 2756-2779, Oct. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.10 , pp. 2756-2779
    • Lin, C.-J.1
  • 16
    • 44649157722 scopus 로고    scopus 로고
    • Nonnegative matrix factorization with quadratic programming
    • Jun.
    • R. Zdunek and A. Cichocki, "Nonnegative matrix factorization with quadratic programming," Neurocomputing, vol. 71, nos. 10-12, pp. 2309-2320, Jun. 2008.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 2309-2320
    • Zdunek, R.1    Cichocki, A.2
  • 17
    • 70350175761 scopus 로고    scopus 로고
    • Fast projection-based methods for the least squares nonnegative matrix approximation problem
    • Feb.
    • D. Kim, S. Sra, and I. S. Dhillon, "Fast projection-based methods for the least squares nonnegative matrix approximation problem," Stat. Anal. Data Min., vol. 1, no. 1, pp. 38-51, Feb. 2008.
    • (2008) Stat. Anal. Data Min. , vol.1 , Issue.1 , pp. 38-51
    • Kim, D.1    Sra, S.2    Dhillon, I.S.3
  • 18
    • 35648932867 scopus 로고    scopus 로고
    • Multiplicative updates for non-negative projections
    • DOI 10.1016/j.neucom.2006.11.023, PII S0925231207000318, Dedicated Hardware Architectures for Intelligent Systems
    • Z. Yang and J. Laaksonen, "Multiplicative updates for non-negative projections," Neurocomputing, vol. 71, nos. 1-3, pp. 363-373, Dec. 2007. (Pubitemid 350028651)
    • (2007) Neurocomputing , vol.71 , Issue.1-3 , pp. 363-373
    • Yang, Z.1    Laaksonen, J.2
  • 19
    • 52749094881 scopus 로고    scopus 로고
    • Robust parameter estimation with a small bias against heavy contamination
    • Oct.
    • H. Fujisawa and S. Eguchi, "Robust parameter estimation with a small bias against heavy contamination," J. Multivar. Anal., vol. 99, no. 9, pp. 2053-2081, Oct. 2008.
    • (2008) J. Multivar. Anal. , vol.99 , Issue.9 , pp. 2053-2081
    • Fujisawa, H.1    Eguchi, S.2
  • 20
    • 80051594038 scopus 로고    scopus 로고
    • Algorithms for nonnegative matrix factorization with the β-divergence
    • Sep.
    • C. Févotte and J. Idier, "Algorithms for nonnegative matrix factorization with the β-divergence," Neural Comput., vol. 23, no. 9, pp. 2421-2456, Sep. 2011.
    • (2011) Neural Comput. , vol.23 , Issue.9 , pp. 2421-2456
    • Févotte, C.1    Idier, J.2
  • 22
    • 74549174193 scopus 로고    scopus 로고
    • Semi-supervised nonnegative matrix factorization
    • Jan.
    • H. Lee, J. Yoo, and S. Choi, "Semi-supervised nonnegative matrix factorization," IEEE Signal Process. Lett., vol. 17, no. 1, pp. 4-7, Jan. 2010.
    • (2010) IEEE Signal Process. Lett. , vol.17 , Issue.1 , pp. 4-7
    • Lee, H.1    Yoo, J.2    Choi, S.3
  • 23
    • 1342332031 scopus 로고    scopus 로고
    • A Tutorial on MM Algorithms
    • D. R. Hunter and K. Lange, "A tutorial on MM algorithms," Amer. Stat., vol. 58, no. 1, pp. 30-37, Feb. 2004. (Pubitemid 38260327)
    • (2004) American Statistician , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 24
    • 15244346000 scopus 로고    scopus 로고
    • The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems
    • DOI 10.1007/s10479-004-5022-1
    • L. T. H. An and P. D. Tao, "The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems," Ann. Oper. Res., vol. 133, nos. 1-4, pp. 23-46, 2005. (Pubitemid 40389738)
    • (2005) Annals of Operations Research , vol.133 , Issue.1-4 , pp. 23-46
    • An, L.T.H.1    Tao, P.D.2
  • 25
    • 34548051389 scopus 로고    scopus 로고
    • Multiplicative updates for nonnegative quadratic programming
    • Aug.
    • F. Sha, Y. Lin, L. K. Saul, and D. D. Lee, "Multiplicative updates for nonnegative quadratic programming," Neural Comput., vol. 19, no. 8, pp. 2004-2031, Aug. 2007.
    • (2007) Neural Comput. , vol.19 , Issue.8 , pp. 2004-2031
    • Sha, F.1    Lin, Y.2    Saul, L.K.3    Lee, D.D.4
  • 26
    • 78449276257 scopus 로고    scopus 로고
    • Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence
    • Kittilä, Finland, Aug.-Sep.
    • M. Nakano, H. Kameoka, J. L. Roux, Y. Kitano, N. Ono, and S. Sagayama, "Convergence-guaranteed multiplicative algorithms for nonnegative matrix factorization with β-divergence," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., Kittilä, Finland, Aug.-Sep. 2010, pp. 283-288.
    • (2010) Proc.IEEE Int. Workshop Mach. Learn. Signal Process , pp. 283-288
    • Nakano, M.1    Kameoka, H.2    Roux, J.L.3    Kitano, Y.4    Ono, N.5    Sagayama, S.6
  • 28
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated Gradient versus Gradient Descent for Linear Predictors
    • J. Kivinen and M. K. Warmuth, "Exponentiated gradient versus gradient descent for linear predictors," Inf. Comput., vol. 132, no. 1, pp. 1-63, Jan. 1997. (Pubitemid 127454001)
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 29
    • 1942452250 scopus 로고    scopus 로고
    • Adaptive overrelaxed bound optimization methods
    • Washington D.C.
    • R. Salakhutdinov and S. Roweis, "Adaptive overrelaxed bound optimization methods," in Proc. 20th Int. Conf. Mach. Learn., Washington D.C., 2003, pp. 664-671.
    • (2003) Proc. 20th Int. Conf. Mach. Learn , pp. 664-671
    • Salakhutdinov, R.1    Roweis, S.2
  • 30
    • 26444591944 scopus 로고    scopus 로고
    • Projective Nonnegative Matrix Factorization for image compression and feature extraction
    • Image Analysis: 14th Scandinavian Conference, SCIA 2005. Proceedings
    • Z. Yuan and E. Oja, "Projective nonnegative matrix factorization for image compression and feature extraction," in Proc. 14th Scandinavian Conf. Image Anal., Joensuu, Finland, Jun. 2005, pp. 333-342. (Pubitemid 41422676)
    • (2005) Lecture Notes in Computer Science , vol.3540 , pp. 333-342
    • Yuan, Z.1    Oja, E.2
  • 31
    • 38149129232 scopus 로고    scopus 로고
    • Projective non-negative matrix factorization with applications to facial image processing
    • Dec.
    • Z. Yang, Z. Yuan, and J. Laaksonen, "Projective non-negative matrix factorization with applications to facial image processing," Int. J. Pattern Recognit. Artif. Intell., vol. 21, no. 8, pp. 1353-1362, Dec. 2007.
    • (2007) Int. J. Pattern Recognit. Artif. Intell. , vol.21 , Issue.8 , pp. 1353-1362
    • Yang, Z.1    Yuan, Z.2    Laaksonen, J.3
  • 32
    • 77951938107 scopus 로고    scopus 로고
    • Linear and nonlinear projective nonnegative matrix factorization
    • May
    • Z. Yang and E. Oja, "Linear and nonlinear projective nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 5, pp. 734-749, May 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.5 , pp. 734-749
    • Yang, Z.1    Oja, E.2
  • 33
    • 67049146331 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding
    • Pisa, Italy, Dec.
    • C. Ding, T. Li, and M. I. Jordan, "Nonnegative matrix factorization for combinatorial optimization: Spectral clustering, graph matching, and clique finding," in Proc. 8th IEEE Int. Conf. Data Min., Pisa, Italy, Dec. 2008, pp. 183-192.
    • (2008) Proc. 8th. IEEE Int. Conf. Data Min , pp. 183-192
    • Ding, C.1    Li, T.2    Jordan, M.I.3
  • 34
    • 78449302633 scopus 로고    scopus 로고
    • Non-negative matrix factorization for parameter estimation in hidden Markov models
    • Kittilä, Finland, Aug.-Sep.
    • B. Lakshminarayanan and R. Raich, "Non-negative matrix factorization for parameter estimation in hidden Markov models," in Proc. IEEE Int. Workshop Mach. Learn. Signal Process., Kittilä, Finland, Aug.-Sep. 2010, pp. 89-94.
    • (2010) Proc.IEEE Int. Workshop Mach. Learn. Signal Process , pp. 89-94
    • Lakshminarayanan, B.1    Raich, R.2
  • 35
    • 36348966695 scopus 로고    scopus 로고
    • On the convergence of multiplicative update algorithms for nonnegative matrix factorization
    • DOI 10.1109/TNN.2007.895831
    • C.-J. Lin, "On the convergence of multiplicative update algorithms for nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1589-1596, Nov. 2007. (Pubitemid 350148414)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1589-1596
    • Lin, C.-J.1
  • 36
    • 23744456750 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?" in Proc. Adv. Neural Inf. Process. Syst. 16, 2003, pp. 1141-1148.
    • (2003) Proc. Adv. Neural Inf. Process. Syst. , vol.16 , pp. 1141-1148
    • Donoho, D.1    Stodden, V.2
  • 37
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification
    • Sarasota, FL, Dec.
    • F. Samaria and A. Harter, "Parameterisation of a stochastic model for human face identification," in Proc. 2nd IEEE Workshop Appl. Comput. Vi s., Sarasota, FL, Dec. 1994, pp. 138-142.
    • (1994) Proc. 2nd IEEE Workshop Appl. Comput. Vi S , pp. 138-142
    • Samaria, F.1    Harter, A.2
  • 38
    • 34547433480 scopus 로고    scopus 로고
    • Accelerating the Lee-Seung algorithm for nonnegative matrix factorization
    • Rice Univ., Houston, TX, Tech. Rep. TR05-02 Mar.
    • E. F. Gonzalez and Y. Zhang, "Accelerating the Lee-Seung algorithm for nonnegative matrix factorization," Dept. Comput. Appl. Math., Rice Univ., Houston, TX, Tech. Rep. TR05-02, Mar. 2005.
    • (2005) Dept. Comput. Appl. Math
    • Gonzalez, E.F.1    Zhang, Y.2
  • 39
    • 78650045636 scopus 로고    scopus 로고
    • Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization
    • Dec.
    • R. Badeau, N. Bertin, and E. Vincent, "Stability analysis of multiplicative update algorithms and application to nonnegative matrix factorization," IEEE Trans. Neural Netw., vol. 21, no. 12, pp. 1869-1881, Dec. 2010.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.12 , pp. 1869-1881
    • Badeau, R.1    Bertin, N.2    Vincent, E.3
  • 40
    • 33750620445 scopus 로고    scopus 로고
    • Initialization enhancer for non-negative matrix factorization
    • DOI 10.1016/j.engappai.2006.03.001, PII S0952197606000571
    • Z. Zheng, J. Yang, and Y. Zhu, "Initialization enhancer for non-negative matrix factorization," Eng. Appl. Artif. Intell., vol. 20, no. 1, pp. 101-110, Feb. 2007. (Pubitemid 44692462)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.1 , pp. 101-110
    • Zheng, Z.1    Yang, J.2    Zhu, Y.3
  • 41
    • 34547505091 scopus 로고    scopus 로고
    • A method of initialization for nonnegative matrix factorization
    • Speech, Signal Process., Honolulu, HI, Apr.
    • Y. Kim and S. Choi, "A method of initialization for nonnegative matrix factorization," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Honolulu, HI, Apr. 2007, pp. 537-540.
    • (2007) Proc.IEEE Int. Conf. Acoust , pp. 537-540
    • Kim, Y.1    Choi, S.2
  • 43
    • 77956416620 scopus 로고    scopus 로고
    • Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities
    • A. Cichocki and S.-I. Amari, "Families of alpha-beta-and gamma-divergences: Flexible and robust measures of similarities," Entropy, vol. 12, no. 6, pp. 1532-1568, 2010.
    • (2010) Entropy , vol.12 , Issue.6 , pp. 1532-1568
    • Cichocki, A.1    Amari, S.-I.2
  • 44
    • 79960337319 scopus 로고    scopus 로고
    • Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization
    • A. Cichocki, S. Cruces, and S.-I. Amari, "Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization," Entropy, vol. 13, no. 1, pp. 134-170, 2011.
    • (2011) Entropy , vol.13 , Issue.1 , pp. 134-170
    • Cichocki, A.1    Cruces, S.2    Amari, S.-I.3
  • 45
    • 78049308820 scopus 로고    scopus 로고
    • Learning α-integration with partially-labeled data
    • Speech, Signal Process., Dallas, TX, Mar.
    • H. Choi, S. Choi, A. Katake, and Y. Choe, "Learning α-integration with partially-labeled data," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Dallas, TX, Mar. 2010, pp. 2058-2061.
    • (2010) Proc.IEEE Int. Conf. Acoust , pp. 2058-2061
    • Choi, H.1    Choi, S.2    Katake, A.3    Choe, Y.4
  • 46
    • 73949119816 scopus 로고    scopus 로고
    • Robust extraction of local structures by the minimum β-divergence method
    • Mar.
    • M. Mollah, N. Sultana, and M. Minami, "Robust extraction of local structures by the minimum β-divergence method," Neural Netw., vol. 23, no. 2, pp. 226-238, Mar. 2010.
    • (2010) Neural Netw. , vol.23 , Issue.2 , pp. 226-238
    • Mollah, M.1    Sultana, N.2    Minami, M.3
  • 47
    • 9444294517 scopus 로고    scopus 로고
    • Multiplicative Updates for Large Margin Classifiers
    • Learning Theory and Kernel Machines
    • F. Sha, L. K. Saul, and D. D. Lee, "Multiplicative updates for large margin classifiers," in Proc. 16th Annu. Conf. Comput. Learn. Theory, 2003, pp. 188-202. (Pubitemid 37053204)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 188-202
    • Sha, F.1    Saul, L.K.2    Lee, D.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.