메뉴 건너뛰기




Volumn 23, Issue 2, 2010, Pages 226-238

Robust extraction of local structures by the minimum β-divergence method

Author keywords

divergence; Adaptive selection for the tuning parameter; Cross validation; Initialization of the parameters; Local PCA; Sequential estimation

Indexed keywords

ADAPTIVE SELECTION; CROSS VALIDATION; DATA CLUSTERS; FINITE MIXTURE MODELS; INITIAL VALUES; LOCAL PRINCIPAL COMPONENT ANALYSIS; LOCAL STRUCTURE; OBSERVED DATA; PCA MODEL; ROBUST LEARNING ALGORITHM; SELECTION PROCEDURES; SEQUENTIAL ESTIMATION; STRUCTURE-BASED; TUNING PARAMETER;

EID: 73949119816     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.11.011     Document Type: Article
Times cited : (32)

References (30)
  • 1
    • 0017392285 scopus 로고
    • Neural theory of association and concept formation
    • Amari S.-I. Neural theory of association and concept formation. Biological Cybernetics 26 (1977) 175-185
    • (1977) Biological Cybernetics , vol.26 , pp. 175-185
    • Amari, S.-I.1
  • 2
    • 0001640740 scopus 로고    scopus 로고
    • Robust and efficient estimation by minimising a density power divergence
    • Basu A., Harris I.R., Hjort N.L., and Jones M.C. Robust and efficient estimation by minimising a density power divergence. Biometrika 85 (1998) 549-559
    • (1998) Biometrika , vol.85 , pp. 549-559
    • Basu, A.1    Harris, I.R.2    Hjort, N.L.3    Jones, M.C.4
  • 3
    • 0001011286 scopus 로고
    • Robust procedures in multivariate analysis 1: Robust co-variance estimation
    • Campbell N.A. Robust procedures in multivariate analysis 1: Robust co-variance estimation. Applied Statistics 29 (1980) 231-237
    • (1980) Applied Statistics , vol.29 , pp. 231-237
    • Campbell, N.A.1
  • 4
    • 0001088628 scopus 로고    scopus 로고
    • Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies
    • Croux C., and Haesbroeck G. Principal component analysis based on robust estimators of the covariance or correlation matrix: Influence functions and efficiencies. Biometrika 87 (2000) 603-618
    • (2000) Biometrika , vol.87 , pp. 603-618
    • Croux, C.1    Haesbroeck, G.2
  • 10
    • 0001710505 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24 (1933) 417-441
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 11
    • 0345062510 scopus 로고    scopus 로고
    • The influence function of principal component analysis by self-organizing rule
    • 82(397), 249-266
    • Higuchi I., and Eguchi S. The influence function of principal component analysis by self-organizing rule. Neural Computation 10 (1998) 1435-1444 82(397), 249-266
    • (1998) Neural Computation , vol.10 , pp. 1435-1444
    • Higuchi, I.1    Eguchi, S.2
  • 12
    • 17044392762 scopus 로고    scopus 로고
    • Robust principal component analysis with adaptive selection for tuning parameters
    • Higuchi I., and Eguchi S. Robust principal component analysis with adaptive selection for tuning parameters. Journal of Machine Learning Research 5 (2004) 453-471
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 453-471
    • Higuchi, I.1    Eguchi, S.2
  • 15
  • 16
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • Kambhatla N., and Leen T.K. Dimension reduction by local principal component analysis. Neural Computation 9 (1997) 1493-1516
    • (1997) Neural Computation , vol.9 , pp. 1493-1516
    • Kambhatla, N.1    Leen, T.K.2
  • 18
    • 0034290916 scopus 로고    scopus 로고
    • ICA Mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation
    • Lee T.-W., Lewicki M.S., and Sejnowski T.J. ICA Mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind signal separation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000) 1078-1089
    • (2000) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.22 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.J.3
  • 20
    • 0040673441 scopus 로고    scopus 로고
    • Robust blind source separation by beta-divergence
    • Minami M., and Eguchi S. Robust blind source separation by beta-divergence. Neural Computation 14 (2002) 1859-1886
    • (2002) Neural Computation , vol.14 , pp. 1859-1886
    • Minami, M.1    Eguchi, S.2
  • 22
    • 33645716208 scopus 로고    scopus 로고
    • Exploring latent structure of mixture ICA models by the minimum β-divergence method
    • Mollah M.N.H., Minami M., and Eguchi S. Exploring latent structure of mixture ICA models by the minimum β-divergence method. Neural Computation 17 (2006) 166-190
    • (2006) Neural Computation , vol.17 , pp. 166-190
    • Mollah, M.N.H.1    Minami, M.2    Eguchi, S.3
  • 23
    • 33847314660 scopus 로고    scopus 로고
    • Robust prewhitening for ICA by minimizing beta-divergence and its application to FastICA
    • Mollah M.N.H., Minami M., and Eguchi S. Robust prewhitening for ICA by minimizing beta-divergence and its application to FastICA. Neural Processing Letters 25 2 (2007) 91-110
    • (2007) Neural Processing Letters , vol.25 , Issue.2 , pp. 91-110
    • Mollah, M.N.H.1    Minami, M.2    Eguchi, S.3
  • 24
    • 8644270422 scopus 로고    scopus 로고
    • An extension of neural gas to local PCA
    • Möller R., and Hoffmann H. An extension of neural gas to local PCA. Neurocomputing 62 (2004) 305-326
    • (2004) Neurocomputing , vol.62 , pp. 305-326
    • Möller, R.1    Hoffmann, H.2
  • 25
    • 0002399288 scopus 로고
    • Neural networks, principal components and subspace
    • Oja E. Neural networks, principal components and subspace. Journal of Neural Systems 1 (1989) 61-68
    • (1989) Journal of Neural Systems , vol.1 , pp. 61-68
    • Oja, E.1
  • 28
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping M.E., and Bishop C.M. Mixtures of probabilistic principal component analysers. Neural Computation 11 2 (1999) 443-482
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 29
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • Xu L., and Yuille A. Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Transactions on Neural Networks 6 (1995) 131-143
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 131-143
    • Xu, L.1    Yuille, A.2
  • 30
    • 0034826327 scopus 로고    scopus 로고
    • A nonlinear neural network model of mixture of local principal component analysis: Application to handwritten digits recognition
    • Zhang B., Fu M., and Yan H. A nonlinear neural network model of mixture of local principal component analysis: Application to handwritten digits recognition. Pattern Recognition 34 (2001) 203-214
    • (2001) Pattern Recognition , vol.34 , pp. 203-214
    • Zhang, B.1    Fu, M.2    Yan, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.