메뉴 건너뛰기




Volumn 233, Issue 4, 2009, Pages 878-888

A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation

Author keywords

Convergence; Finite difference method; Kuramoto Tsuzuki equation

Indexed keywords

CONVERGENCE; CONVERGENCE AND STABILITY; DIFFERENCE SCHEMES; HOMOGENEOUS BOUNDARY CONDITION; KURAMOTO-TSUZUKI EQUATION; NUMERICAL EXAMPLE; NUMERICAL SOLUTION; PRIOR ESTIMATES; SECOND ORDER CONVERGENCE; SECOND ORDERS;

EID: 70349731416     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2009.07.058     Document Type: Article
Times cited : (30)

References (16)
  • 1
    • 0039859605 scopus 로고
    • On the convergence of difference schemes for the Kuramoto-Tsuzuki equation and for systems of reaction-diffusion type
    • Tsertsvadze G.Z. On the convergence of difference schemes for the Kuramoto-Tsuzuki equation and for systems of reaction-diffusion type. Zh. Vychisl. Mat. Mat. Fiz. 31 (1991) 698-707
    • (1991) Zh. Vychisl. Mat. Mat. Fiz. , vol.31 , pp. 698-707
    • Tsertsvadze, G.Z.1
  • 2
    • 0040709337 scopus 로고    scopus 로고
    • On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation
    • Sun Z.Z. On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 98 (1998) 289-304
    • (1998) J. Comput. Appl. Math. , vol.98 , pp. 289-304
    • Sun, Z.Z.1
  • 3
    • 0039859606 scopus 로고    scopus 로고
    • A linear difference scheme for the Kuramoto-Tsuzuki equation
    • Sun Z.Z. A linear difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Math. 14 (1996) 1-7
    • (1996) J. Comput. Math. , vol.14 , pp. 1-7
    • Sun, Z.Z.1
  • 4
    • 0041046545 scopus 로고    scopus 로고
    • A generalized Box scheme for the Kuramoto-Tsuzuki equation
    • Sun Z.Z. A generalized Box scheme for the Kuramoto-Tsuzuki equation. J. Southeast Univ. 26 (1996) 87-92
    • (1996) J. Southeast Univ. , vol.26 , pp. 87-92
    • Sun, Z.Z.1
  • 5
    • 0039267947 scopus 로고    scopus 로고
    • ∞ convergenc of a linearized difference scheme for the Kuramoto-Tsuzuki equation
    • ∞ convergenc of a linearized difference scheme for the Kuramoto-Tsuzuki equation. Nanjin Univ. J. Math. Biquarterly 14 (1997) 5-9
    • (1997) Nanjin Univ. J. Math. Biquarterly , vol.14 , pp. 5-9
    • Sun, Z.Z.1
  • 6
    • 27844602825 scopus 로고
    • On convergence of difference schemes for nonlinear Schrödinger equations, the Kuramoto-Tsuzuki equation, and reaction-diffusion type systems
    • Ivanauskas F. On convergence of difference schemes for nonlinear Schrödinger equations, the Kuramoto-Tsuzuki equation, and reaction-diffusion type systems. Liet. Mat. Rink. 34 (1994) 32-51
    • (1994) Liet. Mat. Rink. , vol.34 , pp. 32-51
    • Ivanauskas, F.1
  • 7
    • 53249149846 scopus 로고    scopus 로고
    • On convergence and stability of difference schemes for derivative nonlinear evolution equations
    • Ivanauskas F. On convergence and stability of difference schemes for derivative nonlinear evolution equations. Liet. Mat. Rink. 36 (1996) 10-20
    • (1996) Liet. Mat. Rink. , vol.36 , pp. 10-20
    • Ivanauskas, F.1
  • 8
    • 49249108572 scopus 로고    scopus 로고
    • Stability and convergence of difference scheme for nonlinear evolutionary type equations
    • Abidi F., Ayadi M., and Omrani K. Stability and convergence of difference scheme for nonlinear evolutionary type equations. J. Appl. Math. Comput. 27 (2008) 293-305
    • (2008) J. Appl. Math. Comput. , vol.27 , pp. 293-305
    • Abidi, F.1    Ayadi, M.2    Omrani, K.3
  • 9
    • 26444462611 scopus 로고    scopus 로고
    • Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equation
    • Omrani K. Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equation. Numer. Methods Partial Differential Equations 21 5 (2005) 961-975
    • (2005) Numer. Methods Partial Differential Equations , vol.21 , Issue.5 , pp. 961-975
    • Omrani, K.1
  • 10
    • 49249139041 scopus 로고    scopus 로고
    • Optimal L? error estimates for finite element Galerkin methods for nonlinear evolution equations
    • Omrani K. Optimal L? error estimates for finite element Galerkin methods for nonlinear evolution equations. J. Appl. Math. Comput. 26 1-2 (2008) 247-262
    • (2008) J. Appl. Math. Comput. , vol.26 , Issue.1-2 , pp. 247-262
    • Omrani, K.1
  • 11
    • 70349743302 scopus 로고    scopus 로고
    • Q. Xu, Difference method for partial differential equations and applications in image processing, Chinese Academy of Sciences, Ph.D. Thesis, 2008 (in Chinese)
    • Q. Xu, Difference method for partial differential equations and applications in image processing, Chinese Academy of Sciences, Ph.D. Thesis, 2008 (in Chinese)
  • 12
    • 79952967244 scopus 로고    scopus 로고
    • Difference Methods for computing the Ginzburg-Landau Equation in two dimensions
    • in press
    • Q. Xu, Q. Chang, Difference Methods for computing the Ginzburg-Landau Equation in two dimensions, Numer. Methods Partial Differential Equations (in press)
    • Numer. Methods Partial Differential Equations
    • Xu, Q.1    Chang, Q.2
  • 13
    • 21844485652 scopus 로고
    • A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation
    • Sun Z.Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 64 (1995) 1463-1471
    • (1995) Math. Comput. , vol.64 , pp. 1463-1471
    • Sun, Z.Z.1
  • 14
    • 2442538708 scopus 로고
    • The convergence of numerical method for nonlinear Schrödinger equations
    • Guo B. The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 4 (1986) 121-130
    • (1986) J. Comput. Math. , vol.4 , pp. 121-130
    • Guo, B.1
  • 15
    • 70349732515 scopus 로고
    • Implicit difference schemes for the generalized non-linear Schrödinger system, The convergence of numerical method for nonlinear Schrödinger equations
    • Zhu Y. Implicit difference schemes for the generalized non-linear Schrödinger system, The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 1 2 (1983) 116-129
    • (1983) J. Comput. Math. , vol.1 , Issue.2 , pp. 116-129
    • Zhu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.