-
1
-
-
0039859605
-
On the convergence of difference schemes for the Kuramoto-Tsuzuki equation and for systems of reaction-diffusion type
-
Tsertsvadze G.Z. On the convergence of difference schemes for the Kuramoto-Tsuzuki equation and for systems of reaction-diffusion type. Zh. Vychisl. Mat. Mat. Fiz. 31 (1991) 698-707
-
(1991)
Zh. Vychisl. Mat. Mat. Fiz.
, vol.31
, pp. 698-707
-
-
Tsertsvadze, G.Z.1
-
2
-
-
0040709337
-
On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation
-
Sun Z.Z. On Tsertsvadze's difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Appl. Math. 98 (1998) 289-304
-
(1998)
J. Comput. Appl. Math.
, vol.98
, pp. 289-304
-
-
Sun, Z.Z.1
-
3
-
-
0039859606
-
A linear difference scheme for the Kuramoto-Tsuzuki equation
-
Sun Z.Z. A linear difference scheme for the Kuramoto-Tsuzuki equation. J. Comput. Math. 14 (1996) 1-7
-
(1996)
J. Comput. Math.
, vol.14
, pp. 1-7
-
-
Sun, Z.Z.1
-
4
-
-
0041046545
-
A generalized Box scheme for the Kuramoto-Tsuzuki equation
-
Sun Z.Z. A generalized Box scheme for the Kuramoto-Tsuzuki equation. J. Southeast Univ. 26 (1996) 87-92
-
(1996)
J. Southeast Univ.
, vol.26
, pp. 87-92
-
-
Sun, Z.Z.1
-
5
-
-
0039267947
-
∞ convergenc of a linearized difference scheme for the Kuramoto-Tsuzuki equation
-
∞ convergenc of a linearized difference scheme for the Kuramoto-Tsuzuki equation. Nanjin Univ. J. Math. Biquarterly 14 (1997) 5-9
-
(1997)
Nanjin Univ. J. Math. Biquarterly
, vol.14
, pp. 5-9
-
-
Sun, Z.Z.1
-
6
-
-
27844602825
-
On convergence of difference schemes for nonlinear Schrödinger equations, the Kuramoto-Tsuzuki equation, and reaction-diffusion type systems
-
Ivanauskas F. On convergence of difference schemes for nonlinear Schrödinger equations, the Kuramoto-Tsuzuki equation, and reaction-diffusion type systems. Liet. Mat. Rink. 34 (1994) 32-51
-
(1994)
Liet. Mat. Rink.
, vol.34
, pp. 32-51
-
-
Ivanauskas, F.1
-
7
-
-
53249149846
-
On convergence and stability of difference schemes for derivative nonlinear evolution equations
-
Ivanauskas F. On convergence and stability of difference schemes for derivative nonlinear evolution equations. Liet. Mat. Rink. 36 (1996) 10-20
-
(1996)
Liet. Mat. Rink.
, vol.36
, pp. 10-20
-
-
Ivanauskas, F.1
-
8
-
-
49249108572
-
Stability and convergence of difference scheme for nonlinear evolutionary type equations
-
Abidi F., Ayadi M., and Omrani K. Stability and convergence of difference scheme for nonlinear evolutionary type equations. J. Appl. Math. Comput. 27 (2008) 293-305
-
(2008)
J. Appl. Math. Comput.
, vol.27
, pp. 293-305
-
-
Abidi, F.1
Ayadi, M.2
Omrani, K.3
-
9
-
-
26444462611
-
Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equation
-
Omrani K. Convergence of Galerkin approximations for the Kuramoto-Tsuzuki equation. Numer. Methods Partial Differential Equations 21 5 (2005) 961-975
-
(2005)
Numer. Methods Partial Differential Equations
, vol.21
, Issue.5
, pp. 961-975
-
-
Omrani, K.1
-
10
-
-
49249139041
-
Optimal L? error estimates for finite element Galerkin methods for nonlinear evolution equations
-
Omrani K. Optimal L? error estimates for finite element Galerkin methods for nonlinear evolution equations. J. Appl. Math. Comput. 26 1-2 (2008) 247-262
-
(2008)
J. Appl. Math. Comput.
, vol.26
, Issue.1-2
, pp. 247-262
-
-
Omrani, K.1
-
11
-
-
70349743302
-
-
Q. Xu, Difference method for partial differential equations and applications in image processing, Chinese Academy of Sciences, Ph.D. Thesis, 2008 (in Chinese)
-
Q. Xu, Difference method for partial differential equations and applications in image processing, Chinese Academy of Sciences, Ph.D. Thesis, 2008 (in Chinese)
-
-
-
-
12
-
-
79952967244
-
Difference Methods for computing the Ginzburg-Landau Equation in two dimensions
-
in press
-
Q. Xu, Q. Chang, Difference Methods for computing the Ginzburg-Landau Equation in two dimensions, Numer. Methods Partial Differential Equations (in press)
-
Numer. Methods Partial Differential Equations
-
-
Xu, Q.1
Chang, Q.2
-
13
-
-
21844485652
-
A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation
-
Sun Z.Z. A second-order accurate linearized difference scheme for the two-dimensional Cahn-Hilliard equation. Math. Comput. 64 (1995) 1463-1471
-
(1995)
Math. Comput.
, vol.64
, pp. 1463-1471
-
-
Sun, Z.Z.1
-
14
-
-
2442538708
-
The convergence of numerical method for nonlinear Schrödinger equations
-
Guo B. The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 4 (1986) 121-130
-
(1986)
J. Comput. Math.
, vol.4
, pp. 121-130
-
-
Guo, B.1
-
15
-
-
70349732515
-
Implicit difference schemes for the generalized non-linear Schrödinger system, The convergence of numerical method for nonlinear Schrödinger equations
-
Zhu Y. Implicit difference schemes for the generalized non-linear Schrödinger system, The convergence of numerical method for nonlinear Schrödinger equations. J. Comput. Math. 1 2 (1983) 116-129
-
(1983)
J. Comput. Math.
, vol.1
, Issue.2
, pp. 116-129
-
-
Zhu, Y.1
|