메뉴 건너뛰기




Volumn 2711, Issue , 2003, Pages 137-148

Dynamic importance sampling computation in Bayesian networks

Author keywords

Approximate algorithms; Bayesian networks; Importance sampling; Probability propagation

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; MONTE CARLO METHODS; POLYNOMIAL APPROXIMATION; PROBABILITY; SAMPLING; BAYESIAN NETWORKS;

EID: 8344266843     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-45062-7_11     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 4
    • 0013276753 scopus 로고    scopus 로고
    • Lazy evaluation in penniless propagation over join trees
    • A. Cano, S. Moral, and A. Salmerón. Lazy evaluation in penniless propagation over join trees. Networks, 39:175-185, 2002.
    • (2002) Networks , vol.39 , pp. 175-185
    • Cano, A.1    Moral, S.2    Salmerón, A.3
  • 5
    • 0037320216 scopus 로고    scopus 로고
    • Novel strategies to approximate probability trees in penniless propagation
    • A. Cano, S. Moral, and A. Salmerón. Novel strategies to approximate probability trees in penniless propagation. Int. Jnl. of Intelligent Systems, 18:193-203, 2003.
    • (2003) Int. Jnl. of Intelligent Systems , vol.18 , pp. 193-203
    • Cano, A.1    Moral, S.2    Salmerón, A.3
  • 6
    • 0001249662 scopus 로고    scopus 로고
    • AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • J. Cheng, and M.J. Druzdzel. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Jnl of Artificial Intelligence Research, 13:155-188, 2000.
    • (2000) Jnl of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 7
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60:141-153, 1993.
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 8
    • 0031170063 scopus 로고    scopus 로고
    • An optimal approximation algorithm for Bayesian inference
    • P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93:1-27, 1997.
    • (1997) Artificial Intelligence , vol.93 , pp. 1-27
    • Dagum, P.1    Luby, M.2
  • 9
    • 8344276113 scopus 로고    scopus 로고
    • Elvira: An environment for creating and using probabilistic graphical models
    • J.A. Gámez and A. Salmerón, editors
    • Elvira Consortium. Elvira: An environment for creating and using probabilistic graphical models. In J.A. Gámez and A. Salmerón, editors, Proceedings of the First European Workshop on Probabilistic Graphical Models, pages 222-230, 2002.
    • (2002) Proceedings of the First European Workshop on Probabilistic Graphical Models , pp. 222-230
    • Consortium, E.1
  • 10
    • 0007319555 scopus 로고
    • Weighting and integrating evidence for stochastic simulation in Bayesian networks
    • M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors. North-Holland (Amsterdam)
    • R. Fung and K.C. Chang. Weighting and integrating evidence for stochastic simulation in Bayesian networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages 209-220. North-Holland (Amsterdam), 1990.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 209-220
    • Fung, R.1    Chang, K.C.2
  • 11
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • L.D. Hernández, S. Moral, and A. Salmerón. A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. Int. Jnl. of Approximate Reasoning, 18:53-91, 1998.
    • (1998) Int. Jnl. of Approximate Reasoning , vol.18 , pp. 53-91
    • Hernández, L.D.1    Moral, S.2    Salmerón, A.3
  • 12
  • 13
    • 0038902662 scopus 로고
    • Reduction of computational complexity in Bayesian networks through removal of weak dependencies. in
    • Morgan Kaufmann, San Francisco
    • U. Kjærulff. Reduction of computational complexity in Bayesian networks through removal of weak dependencies. In Proc. of the 10th Conference on Uncertainty in Artificial Intelligence, pages 374-382. Morgan Kaufmann, San Francisco, 1994.
    • (1994) Proc. of the 10th Conference on Uncertainty in Artificial Intelligence , pp. 374-382
    • Kjærulff, U.1
  • 14
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Jnl. of the Royal Statistical Society, Series B, 50:157-224, 1988.
    • (1988) Jnl. of the Royal Statistical Society, Series B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 15
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • J. Pearl. Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence, 32:247-257, 1987.
    • (1987) Artificial Intelligence , vol.32 , pp. 247-257
    • Pearl, J.1
  • 16
    • 0030416993 scopus 로고    scopus 로고
    • Probabilistic conflicts in a search algorithm for estimating posterior probabilities in bayesian networks
    • D. Poole. Probabilistic conflicts in a search algorithm for estimating posterior probabilities in bayesian networks. Artificial Intelligence, 88:69-100, 1996.
    • (1996) Artificial Intelligence , vol.88 , pp. 69-100
    • Poole, D.1
  • 18
    • 0034302667 scopus 로고    scopus 로고
    • Importance sampling in Bayesian networks using probability trees
    • A. Salmerón, A. Cano, and S. Moral. Importance sampling in Bayesian networks using probability trees. Comput. Statistics and Data Analysis, 34:387-413, 2000.
    • (2000) Comput. Statistics and Data Analysis , vol.34 , pp. 387-413
    • Salmerón, A.1    Cano, A.2    Moral, S.3
  • 19
    • 84937436880 scopus 로고    scopus 로고
    • Importance sampling in Bayesian networks using antithetic variables
    • S. Benferhat and P. Besnard, editors. Springer Verlag
    • A. Salmeron and S. Moral. Importance sampling in Bayesian networks using antithetic variables. In S. Benferhat and P. Besnard, editors, Symbolic and Quantitative Approaches to Reasoning with Uncertainty, pages 168-179. Springer Verlag, 2001.
    • (2001) Symbolic and Quantitative Approaches to Reasoning with Uncertainty , pp. 168-179
    • Salmeron, A.1    Moral, S.2
  • 22
    • 0001203638 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors. North Holland (Amsterdam)
    • R.D. Shachter and M.A. Peot. Simulation approaches to general probabilistic inference on belief networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages 221-231. North Holland (Amsterdam), 1990.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.A.2
  • 23
    • 0000049635 scopus 로고    scopus 로고
    • Exploiting causal independence in Bayesian network inference
    • N.L. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. Jnl. of Artificial Intelligence Research, 5:301-328, 1996.
    • (1996) Jnl. of Artificial Intelligence Research , vol.5 , pp. 301-328
    • Zhang, N.L.1    Poole, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.