-
2
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
G.F. Cooper. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42:393-405, 1990.
-
(1990)
Artificial Intelligence
, vol.42
, pp. 393-405
-
-
Cooper, G.F.1
-
3
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60:141-153, 1993.
-
(1993)
Artificial Intelligence
, vol.60
, pp. 141-153
-
-
Dagum, P.1
Luby, M.2
-
4
-
-
0031170063
-
An optimal approximation algorithm for Bayesian inference
-
P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93:1-27, 1997.
-
(1997)
Artificial Intelligence
, vol.93
, pp. 1-27
-
-
Dagum, P.1
Luby, M.2
-
5
-
-
0018984903
-
An accurate approximation to the sampling distribution of the studentized extreme-valued statistic
-
K.W. Fertig and N.R. Mann. An accurate approximation to the sampling distribution of the studentized extreme-valued statistic. Technometrics, 22:83-90, 1980.
-
(1980)
Technometrics
, vol.22
, pp. 83-90
-
-
Fertig, K.W.1
Mann, N.R.2
-
6
-
-
0007319555
-
Weighting and integrating evidence for stochastic simulation in Bayesian networks
-
M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, North-Holland (Amsterdam)
-
R. Fung and K.C. Chang. Weighting and integrating evidence for stochastic simulation in Bayesian networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages 209-220. North-Holland (Amsterdam), 1990.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 209-220
-
-
Fung, R.1
Chang, K.C.2
-
7
-
-
38249030777
-
Antithetic acceleration of Monte Carlo integration in Bayesian inference
-
J. Geweke. Antithetic acceleration of Monte Carlo integration in Bayesian inference. Journal of Econometrics, 38:73-89, 1988.
-
(1988)
Journal of Econometrics
, vol.38
, pp. 73-89
-
-
Geweke, J.1
-
8
-
-
0007245113
-
Importance sampling algorithms for belief networks based on approximate computation
-
Granada (Spain)
-
L.D. Hernandez, S. Moral, and A. Salmeron. Importance sampling algorithms for belief networks based on approximate computation. In Proceedings of the Sixth International Conference IPMU'96, volume II, pages 859-864, Granada (Spain), 1996.
-
(1996)
Proceedings of the Sixth International Conference IPMU'96
, vol.2
, pp. 859-864
-
-
Hernandez, L.D.1
Moral, S.2
Salmeron, A.3
-
9
-
-
0007178970
-
A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
-
L.D. Hernandez, S. Moral, and A. Salmeron. A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18:53-91, 1998.
-
(1998)
International Journal of Approximate Reasoning
, vol.18
, pp. 53-91
-
-
Hernandez, L.D.1
Moral, S.2
Salmeron, A.3
-
11
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50:157-224, 1988.
-
(1988)
Journal of the Royal Statistical Society, Series B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
12
-
-
0023347981
-
Evidential reasoning using stochastic simulation of causal models
-
J. Pearl. Evidential reasoning using stochastic simulation of causal models. Arti- cial Intelligence, 32:247-257, 1987.
-
(1987)
Arti- Cial Intelligence
, vol.32
, pp. 247-257
-
-
Pearl, J.1
-
17
-
-
0001203638
-
Simulation approaches to general probabilistic inference on belief networks
-
M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, North Holland (Amsterdam
-
R.D. Shachter and M.A. Peot. Simulation approaches to general probabilistic inference on belief networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence, volume 5, pages 221-231. North Holland (Amsterdam), 1990.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 221-231
-
-
Shachter, R.D.1
Peot, M.A.2
|