메뉴 건너뛰기




Volumn 18, Issue 1-2, 1998, Pages 53-91

A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques

Author keywords

Approximate precomputation; Belief networks; Importance sampling; Simulation; Stratified sampling

Indexed keywords


EID: 0007178970     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0888-613X(97)10004-4     Document Type: Article
Times cited : (30)

References (24)
  • 1
    • 0038902672 scopus 로고
    • A stratified simulation scheme for inference in Bayesian belief networks, in uncertainty in artificial intelligence
    • R.R. Bouckaert, A stratified simulation scheme for inference in Bayesian belief networks, in uncertainty in artificial intelligence, Proceedings of the Tenth Conference, 1994, pp. 110-117.
    • (1994) Proceedings of the Tenth Conference , pp. 110-117
    • Bouckaert, R.R.1
  • 4
    • 0042974389 scopus 로고
    • An algorithm for computing probabilistic propositions
    • L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), North-Holland, Amsterdam
    • G.F. Cooper, An algorithm for computing probabilistic propositions, in: L.N. Kanal, T.S. Levitt, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 3, North-Holland, Amsterdam, 1989, pp. 3-14.
    • (1989) Uncertainty in Artificial Intelligence , vol.3 , pp. 3-14
    • Cooper, G.F.1
  • 5
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G. F. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence 42 (1990) 393-405.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 6
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian networks is NP-hard
    • P. Dagum, M. Luby, Approximating probabilistic inference in Bayesian networks is NP-hard, Artificial Intelligence 60 (1993) 141-153.
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 7
    • 0018984903 scopus 로고
    • An accurate approximation to the sampling distribution of the studentized extreme-valued statistic
    • K.W. Fertig, N.R. Mann, An accurate approximation to the sampling distribution of the studentized extreme-valued statistic, Technometrics 22 (1980) 83-90.
    • (1980) Technometrics , vol.22 , pp. 83-90
    • Fertig, K.W.1    Mann, N.R.2
  • 8
    • 0007319555 scopus 로고
    • Weighting and integrating evidence for stochastic simulation in Bayesian networks
    • M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), North-Holland, Amsterdam
    • R. Fung, K.C. Chang, Weighting and integrating evidence for stochastic simulation in Bayesian networks, in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5, North-Holland, Amsterdam, 1990, pp. 209-220.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 209-220
    • Fung, R.1    Chang, K.C.2
  • 9
    • 0003263179 scopus 로고
    • Propagating uncertainty by logic sampling in Bayes' networks
    • J.F. Lemmer, L.N. Kanal (Eds.), North-Holland, Amsterdam
    • M. Henrion, Propagating uncertainty by logic sampling in Bayes' networks, in: J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty in Artificial Intelligence, vol. 2, North-Holland, Amsterdam, 1988, pp. 317-324.
    • (1988) Uncertainty in Artificial Intelligence , vol.2 , pp. 317-324
    • Henrion, M.1
  • 10
    • 0031212440 scopus 로고    scopus 로고
    • Mixing exact and importance sampling propagation algorithms in dependence graphs
    • L.D. Hernández, S. Moral, Mixing exact and importance sampling propagation algorithms in dependence graphs, International Journal of Intelligent Systems 12 (1997) 553-576.
    • (1997) International Journal of Intelligent Systems , vol.12 , pp. 553-576
    • Hernández, L.D.1    Moral, S.2
  • 14
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen, D.J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, Journal of the Royal Statistical Society B 50 (1988) 157-224.
    • (1988) Journal of the Royal Statistical Society B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 15
    • 0030196507 scopus 로고    scopus 로고
    • Bounded recursive approximation: A search method for belief-network inference under limited resources
    • S. Monti, G.F. Cooper, Bounded recursive approximation: A search method for belief-network inference under limited resources, International Journal of Approximate Reasoning 15 (1996) 49-76.
    • (1996) International Journal of Approximate Reasoning , vol.15 , pp. 49-76
    • Monti, S.1    Cooper, G.F.2
  • 16
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • J. Pearl, Evidential reasoning using stochastic simulation of causal models, Artificial Intelligence 32 (1987) 247-257.
    • (1987) Artificial Intelligence , vol.32 , pp. 247-257
    • Pearl, J.1
  • 19
    • 0022818911 scopus 로고
    • Evaluating influence diagrams
    • R.D. Shachter, Evaluating influence diagrams, Operations Research 34 (1986) 871-882.
    • (1986) Operations Research , vol.34 , pp. 871-882
    • Shachter, R.D.1
  • 20
    • 0024038570 scopus 로고
    • Probabilistic inference and influence diagrams
    • R.D. Shachter, Probabilistic inference and influence diagrams, Operations Research 36 (1988) 589-605.
    • (1988) Operations Research , vol.36 , pp. 589-605
    • Shachter, R.D.1
  • 22
    • 0001203638 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), North-Holland, Amsterdam
    • R.D. Shachter, M.A. Peot, Simulation approaches to general probabilistic inference on belief networks, in: M. Henrion, R.D. Shachter, L.N. Kanal, J.F. Lemmer (Eds.), Uncertainty in Artificial Intelligence, vol. 5, North-Holland, Amsterdam, 1990, pp. 221-231.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.A.2
  • 23
    • 0041487753 scopus 로고
    • The equivalence of exact methods for probabilistic inference on belief networks
    • Submitted to
    • R.D. Shachter, S.K. Andersen, P. Szolovits, The equivalence of exact methods for probabilistic inference on belief networks, Submitted to Artificial Intelligence 1991.
    • (1991) Artificial Intelligence
    • Shachter, R.D.1    Andersen, S.K.2    Szolovits, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.