메뉴 건너뛰기




Volumn , Issue , 2011, Pages 269-278

Semi-supervised learning to rank with preference regularization

Author keywords

LambdaRank; learning to rank; partially labeled data; regularization; semi supervised

Indexed keywords

LABELED DATA; LAMBDARANK; LEARNING TO RANK; REGULARIZATION; SEMI-SUPERVISED;

EID: 83055187746     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063620     Document Type: Conference Paper
Times cited : (49)

References (34)
  • 5
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 2006.
    • (2006) Journal of Machine Learning Research
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 11
    • 36849036983 scopus 로고    scopus 로고
    • Extensions of gaussian processes for ranking: Semi-supervised and active learning
    • W. Chu and Z. Ghahramani. Extensions of gaussian processes for ranking: Semi-supervised and active learning. In NIPS workshop on Learning to Rank, 2005.
    • NIPS Workshop on Learning to Rank, 2005
    • Chu, W.1    Ghahramani, Z.2
  • 12
    • 35548956873 scopus 로고    scopus 로고
    • Regularizing query-based retrieval scores
    • F. Diaz. Regularizing query-based retrieval scores. Information Retrieval, 10(6):531-562, 2007.
    • (2007) Information Retrieval , vol.10 , Issue.6 , pp. 531-562
    • Diaz, F.1
  • 18
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • T. Joachims. Transductive inference for text classification using support vector machines. In Intl. Conf. on Machine Learning (ICML), pages 200-209, 1999.
    • (1999) Intl. Conf. on Machine Learning (ICML) , pp. 200-209
    • Joachims, T.1
  • 20
    • 0012435995 scopus 로고    scopus 로고
    • A probabilistic model of information retrieval: Development and comparative experiments
    • K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of information retrieval: development and comparative experiments. In Information Processing & Management, pages 779-840, 2000.
    • (2000) Information Processing & Management , pp. 779-840
    • Jones, K.S.1    Walker, S.2    Robertson, S.E.3
  • 23
    • 77954568972 scopus 로고    scopus 로고
    • LETOR: A benchmark collection for research on learning to rank for information retrieval
    • T. Qin, T.-Y. Liu, J. Xu, and H. Li. LETOR: A benchmark collection for research on learning to rank for information retrieval. Information Retrieval Journal, 2010.
    • (2010) Information Retrieval Journal
    • Qin, T.1    Liu, T.-Y.2    Xu, J.3    Li, H.4
  • 33
    • 38049178360 scopus 로고    scopus 로고
    • Supervised and semi-supervised machine learning ranking
    • Comparative Evaluation of XML Information Retrieval Systems, Springer
    • J.-N. Vittaut and P. Gallinari. Supervised and semi-supervised machine learning ranking. In Comparative Evaluation of XML Information Retrieval Systems, volume 4518 of Lecture Notes in Computer Science, pages 213-222. Springer, 2007.
    • (2007) Lecture Notes in Computer Science , vol.4518 , pp. 213-222
    • Vittaut, J.-N.1    Gallinari, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.