메뉴 건너뛰기




Volumn , Issue , 2008, Pages 251-258

Learning to rank with partially-labeled data

Author keywords

Boosting; Information retrieval; Kernel principal components analysis; Learning to rank; Transductive learning

Indexed keywords

EDUCATION; INFORMATION RETRIEVAL; INFORMATION RETRIEVAL SYSTEMS; INFORMATION SERVICES; MANAGEMENT INFORMATION SYSTEMS; PRINCIPAL COMPONENT ANALYSIS; PROBABILITY DENSITY FUNCTION; RESEARCH AND DEVELOPMENT MANAGEMENT;

EID: 57349182209     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390334.1390379     Document Type: Conference Paper
Times cited : (89)

References (37)
  • 1
    • 33749266045 scopus 로고    scopus 로고
    • Ranking on graph data
    • S. Agarwal. Ranking on graph data. In ICML, 2006.
    • (2006) ICML
    • Agarwal, S.1
  • 2
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. In Journal of Machine Learning Research, volume 6, 2005.
    • (2005) Journal of Machine Learning Research , vol.6
    • Ando, R.K.1    Zhang, T.2
  • 4
    • 85157965754 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. In NIPS, 2006.
    • (2006) NIPS
    • Burges, C.1    Ragno, R.2    Le, Q.3
  • 6
    • 36849036983 scopus 로고    scopus 로고
    • Extensions of gaussian processes for ranking: Semi-supervised and active learning
    • W. Chu and Z. Ghahramani. Extensions of gaussian processes for ranking: semi-supervised and active learning. In NIPS Wksp on Learning to Rank, 2005.
    • (2005) NIPS Wksp on Learning to Rank
    • Chu, W.1    Ghahramani, Z.2
  • 12
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly relevant documents. In SIGIR, 2000.
    • (2000) SIGIR
    • Järvelin, K.1    Kekäläinen, J.2
  • 13
    • 33750309008 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In SIGKDD, 2003.
    • (2003) SIGKDD
    • Joachims, T.1
  • 14
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 1999.
    • (1999) Journal of the ACM , vol.46 , Issue.5
    • Kleinberg, J.1
  • 15
    • 0041775676 scopus 로고    scopus 로고
    • Diffusion kernels on graphs and other discrete structures
    • I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In ICML, 2002.
    • (2002) ICML
    • Kondor, I.1    Lafferty, J.2
  • 16
    • 0030657238 scopus 로고    scopus 로고
    • Analysis of multiple evidence combination
    • J. H. Lee. Analysis of multiple evidence combination. In SIGIR, 1997.
    • (1997) SIGIR
    • Lee, J.H.1
  • 17
    • 57349176354 scopus 로고    scopus 로고
    • P. Li, C. Burges, and Q. Wu. McRank: Learning to rank using classification and gradient boosting. In NIPS, 2007.
    • P. Li, C. Burges, and Q. Wu. McRank: Learning to rank using classification and gradient boosting. In NIPS, 2007.
  • 18
    • 57349152772 scopus 로고    scopus 로고
    • T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on learning to rank for information retrieval. In SIGIR Workshop on Learning to Rank for IR (LR4IR), 2007.
    • T.-Y. Liu, T. Qin, J. Xu, W. Xiong, and H. Li. LETOR: Benchmark dataset for research on learning to rank for information retrieval. In SIGIR Workshop on Learning to Rank for IR (LR4IR), 2007.
  • 20
    • 33750738367 scopus 로고    scopus 로고
    • Direct maximization of rank-based metrics
    • Technical report, University of Massachusetts, Amherst CIIR, 2005
    • D. Metzler. Direct maximization of rank-based metrics. Technical report, University of Massachusetts, Amherst CIIR, 2005.
    • Metzler, D.1
  • 21
    • 57349098579 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-taught learning: transfer learning from unlabeled data. In ICML, 2007.
    • (2007) ICML
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.5
  • 22
    • 0031538203 scopus 로고    scopus 로고
    • Overview of the Okapi projects
    • S. Robertson. Overview of the Okapi projects. Journal of Documentation, 53(1), 1997.
    • (1997) Journal of Documentation , vol.53 , Issue.1
    • Robertson, S.1
  • 23
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 1999.
    • (1999) Machine Learning , vol.37 , Issue.3
    • Schapire, R.E.1    Singer, Y.2
  • 24
  • 26
    • 0004156661 scopus 로고    scopus 로고
    • Sparse kernel feature analysis
    • Technical Report 99-03, University of Wisconsin, Data Mining Institute
    • A. Smola, O. Mangasarian, and B. Schölkopf. Sparse kernel feature analysis. Technical Report 99-03, University of Wisconsin, Data Mining Institute, 1999.
    • (1999)
    • Smola, A.1    Mangasarian, O.2    Schölkopf, B.3
  • 29
    • 57349154682 scopus 로고    scopus 로고
    • Learning ranking function via relevance propagation
    • Technical report, Microsoft Research Asia
    • J. Wang, M. Li, Z. Li, and W.-Y. Ma. Learning ranking function via relevance propagation. Technical report, Microsoft Research Asia, 2005.
    • (2005)
    • Wang, J.1    Li, M.2    Li, Z.3    Ma, W.-Y.4
  • 31
    • 0030407491 scopus 로고    scopus 로고
    • Query expansion using local and global document analysis
    • J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR, 1996.
    • (1996) SIGIR
    • Xu, J.1    Croft, W.B.2
  • 32
    • 36448954244 scopus 로고    scopus 로고
    • J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval. In SIGIR, 2007.
    • J. Xu and H. Li. AdaRank: A boosting algorithm for information retrieval. In SIGIR, 2007.
  • 33
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, 2007.
    • (2007) SIGIR
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 34
    • 0034788435 scopus 로고    scopus 로고
    • A study of smoothing methods for language models applied to ad hoc information retrieval
    • C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc information retrieval. In SIGIR, 2001.
    • (2001) SIGIR
    • Zhai, C.1    Lafferty, J.2
  • 35
    • 36448953520 scopus 로고    scopus 로고
    • A regression framework for learning ranking functions using relative relevance judgements
    • Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression framework for learning ranking functions using relative relevance judgements. In SIGIR, 2007.
    • (2007) SIGIR
    • Zheng, Z.1    Zha, H.2    Chen, K.3    Sun, G.4
  • 37
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530, University of Wisconsin, Madison, Computer Science Dept, 2005
    • X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, University of Wisconsin, Madison, Computer Science Dept., 2005.
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.