메뉴 건너뛰기




Volumn , Issue , 2006, Pages 193-200

Learning to Rank with Nonsmooth Cost Functions

Author keywords

[No Author keywords available]

Indexed keywords

CONDITION; COST-FUNCTION; DIFFERENTIABLE FUNCTIONS; FUNCTION CLASS; MODELING PARAMETERS; NEURAL NETWORK MODEL; NONSMOOTH COST FUNCTION; QUALITY MEASURES; RANKING ALGORITHM; SIMPLE++;

EID: 85157965754     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (186)

References (15)
  • 1
    • 0033650323 scopus 로고    scopus 로고
    • Evaluating evaluation measure stability
    • C. Buckley and E. Voorhees. Evaluating evaluation measure stability. In SIGIR, pages 33-40, 2000.
    • (2000) SIGIR , pp. 33-40
    • Buckley, C.1    Voorhees, E.2
  • 3
    • 84898972495 scopus 로고    scopus 로고
    • Confidence Intervals for the Area Under the ROC Curve
    • MIT Press
    • C. Cortes and M. Mohri. Confidence Intervals for the Area Under the ROC Curve. In NIPS 18. MIT Press, 2005.
    • (2005) NIPS 18
    • Cortes, C.1    Mohri, M.2
  • 5
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2):337-374, 2000.
    • (2000) The Annals of Statistics , vol.28 , Issue.2 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 6
    • 0033645041 scopus 로고    scopus 로고
    • IR evaluation methods for retrieving highly relevant documents
    • ACM
    • K. Jarvelin and J. Kekalainen. IR evaluation methods for retrieving highly relevant documents. In SIGIR 23. ACM, 2000.
    • (2000) SIGIR , vol.23
    • Jarvelin, K.1    Kekalainen, J.2
  • 7
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • T. Joachims. A support vector method for multivariate performance measures. In ICML 22, 2005.
    • (2005) ICML , vol.22
    • Joachims, T.1
  • 12
    • 31844442382 scopus 로고    scopus 로고
    • Learning structured prediciton models: A large margin approach
    • Bonn, Germany
    • B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured prediciton models: A large margin approach. In ICML 22, Bonn, Germany, 2005.
    • (2005) ICML 22
    • Taskar, B.1    Chatalbashev, V.2    Koller, D.3    Guestrin, C.4
  • 13
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning for interdependent and structured output spaces. In ICML 24, 2004.
    • (2004) ICML , vol.24
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 14
    • 84864041061 scopus 로고    scopus 로고
    • Overview of the TREC 2001/2002 Question Answering Track
    • 2002
    • E.M. Voorhees. Overview of the TREC 2001/2002 Question Answering Track. In TREC, 2001,2002.
    • (2001) TREC
    • Voorhees, E.M.1
  • 15
    • 85048429787 scopus 로고    scopus 로고
    • Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic
    • L. Yan, R. Dodlier, M.C. Mozer, and R. Wolniewicz. Optimizing Classifier Performance via an Approximation to the Wilcoxon-Mann-Whitney Statistic. In ICML 20, 2003.
    • (2003) ICML , vol.20
    • Yan, L.1    Dodlier, R.2    Mozer, M.C.3    Wolniewicz, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.