메뉴 건너뛰기




Volumn 70, Issue 7-9, 2007, Pages 1215-1224

Margin-based active learning for LVQ networks

Author keywords

Active learning; Classification; Generalization; Learning vector quantization; Proteomic profiling

Indexed keywords

COST FUNCTIONS; IMAGE CLASSIFICATION; NEURAL NETWORKS; QUERY PROCESSING; RANDOM PROCESSES; VECTOR QUANTIZATION;

EID: 33847401462     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.10.149     Document Type: Article
Times cited : (21)

References (21)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: risk bounds and structural results
    • Bartlett P., and Mendelsohn S. Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3 (2002) 463-482
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelsohn, S.2
  • 2
    • 0025897859 scopus 로고
    • Neural net algorithms that learn in polynomial time from examples and queries
    • Baum E. Neural net algorithms that learn in polynomial time from examples and queries. IEEE Trans. Neural Networks 2 (1991) 5-19
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 5-19
    • Baum, E.1
  • 3
    • 0030628564 scopus 로고    scopus 로고
    • Selecting optimal experiments for multiple output multilayer perceptrons
    • Belue L.M., Bauer Jr. K.W., and Ruck D.W. Selecting optimal experiments for multiple output multilayer perceptrons. Neural Comput. 9 (1997) 161-183
    • (1997) Neural Comput. , vol.9 , pp. 161-183
    • Belue, L.M.1    Bauer Jr., K.W.2    Ruck, D.W.3
  • 4
    • 32544459594 scopus 로고    scopus 로고
    • Learning vector quantization: the dynamics of winner-takes-all algorithms
    • Biehl M., Ghosh A., and Hammer B. Learning vector quantization: the dynamics of winner-takes-all algorithms. Neurocomputing 69 7-9 (2006) 660-670
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 660-670
    • Biehl, M.1    Ghosh, A.2    Hammer, B.3
  • 5
    • 33847345374 scopus 로고    scopus 로고
    • C. Blake, C. Merz, UCI repository of machine learning databases, available at: 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, 1998.
  • 6
    • 33847419506 scopus 로고    scopus 로고
    • C. Cambell, N. Cristianini, A. Smola, Query learning with large margin classifiers, in: International Conference in Machine Learning, 2000, pp. 111-118.
  • 7
    • 33847344940 scopus 로고    scopus 로고
    • K. Crammer, R. Gilad-Bachrach, A. Navot, A. Tishby, Margin analysis of the LVQ algorithm, in: Proceedings of NIPS 2002, 〈http://www-.cs.cmu.edu/Groups/NIPS/NIPS2002/NIPS2002preproceedings/index.html〉, 2002.
  • 9
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • Hammer B., Strickert M., and Villmann T. Supervised neural gas with general similarity measure. Neural Process. Lett. 21 1 (2005) 21-44
    • (2005) Neural Process. Lett. , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 10
    • 17444390516 scopus 로고    scopus 로고
    • On the generalization ability of GRLVQ networks
    • Hammer B., Strickert M., and Villmann T. On the generalization ability of GRLVQ networks. Neural Process. Lett. 21 2 (2005) 109-120
    • (2005) Neural Process. Lett. , vol.21 , Issue.2 , pp. 109-120
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 11
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • Hammer B., and Villmann T. Generalized relevance learning vector quantization. Neural Networks 15 8-9 (2002) 1059-1068
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 13
    • 33847390556 scopus 로고    scopus 로고
    • T. Kohonen, Self-Organizing Maps, Springer Series in Information Sciences, vol. 30, Springer, Berlin, Heidelberg, 1995 (2nd Ext. Ed. 1997).
  • 14
  • 15
    • 33847404739 scopus 로고    scopus 로고
    • Statistical mechanics of generalization
    • Arbib M. (Ed), MIT, Cambridge, MA
    • Opper M. Statistical mechanics of generalization. In: Arbib M. (Ed). The Handbook of Brain Theory and Neural Networks (2003), MIT, Cambridge, MA 1087-1090
    • (2003) The Handbook of Brain Theory and Neural Networks , pp. 1087-1090
    • Opper, M.1
  • 16
    • 0001015964 scopus 로고    scopus 로고
    • A formulation of learning vector quantization using a new misclassification measure
    • Jain A.K., Venkatesh S., and Lovell B.C. (Eds), IEEE Computer Society, Los Alamitos, CA, USA
    • Sato A., and Yamada K. A formulation of learning vector quantization using a new misclassification measure. In: Jain A.K., Venkatesh S., and Lovell B.C. (Eds). Proceedings of the 14th International Conference on Pattern Recognition vol. 1 (1998), IEEE Computer Society, Los Alamitos, CA, USA 322-325
    • (1998) Proceedings of the 14th International Conference on Pattern Recognition , vol.1 , pp. 322-325
    • Sato, A.1    Yamada, K.2
  • 17
    • 33847379185 scopus 로고    scopus 로고
    • E. Schäffeler, U. Zanger, M. Schwab, M. Eichelbaum, Magnetic bead based human plasma profiling discriminate acute lymphatic leukaemia from non-diseased samples, in: 52nd ASMS Conference (ASMS) 2004, 2004, p. TPV 420.
  • 18
    • 33745153734 scopus 로고    scopus 로고
    • F.-M. Schleif, T. Villmann, B. Hammer, Local metric adaptation for soft nearest prototype classification to classify proteomic data, in: Fuzzy Logic and Applications: Sixth International Workshop, WILF 2005, Lecture Notes in Computer Science (LNCS), Springer, Berlin, 2006, pp. 290-296.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.