메뉴 건너뛰기




Volumn 20, Issue 4, 2010, Pages 293-318

Coupled singular value decomposition of a cross-covariance matrix

Author keywords

coupled learning rule; cross covariance matrix; Hebbian learning; Newton's method; Singular value decomposition

Indexed keywords

CROSS-COVARIANCE MATRIX; HEBBIAN LEARNING; LEARNING RULES; NEWTON'S METHODS; SINGULAR VALUES;

EID: 77955914272     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065710002437     Document Type: Article
Times cited : (16)

References (38)
  • 1
    • 0020464111 scopus 로고
    • A simplified neuron model as principal component analyzer
    • E. Oja, A simplified neuron model as principal component analyzer, J. Math. Biol. 15 (1982) 267-273.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 2
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural Networks 2(6) 459-473 (1989).
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.D.1
  • 5
    • 29644438181 scopus 로고    scopus 로고
    • Singular value decomposition learning on double Stiefel manifolds
    • S. Fiori, Singular value decomposition learning on double Stiefel manifolds, Int. J. Neural Syst. 13(2) (2003) 1-16.
    • (2003) Int. J. Neural Syst. , vol.13 , Issue.2 , pp. 1-16
    • Fiori, S.1
  • 6
    • 8644270422 scopus 로고    scopus 로고
    • An extension of neural gas to local PCA
    • R. Möller and H. Hoffmann, An extension of neural gas to local PCA, Neurocomputing 62 (2004) 305-326.
    • (2004) Neurocomputing , vol.62 , pp. 305-326
    • Möller, R.1    Hoffmann, H.2
  • 7
    • 0025474239 scopus 로고
    • Tracking a few extreme singular values and vectors in signal processing
    • P. Comon and G. H. Golub, Tracking a few extreme singular values and vectors in signal processing, Proc. of the IEEE 78(8) (1990) 1327-1343.
    • (1990) Proc. of the IEEE , vol.78 , Issue.8 , pp. 1327-1343
    • Comon, P.1    Golub, G.H.2
  • 8
    • 0004236492 scopus 로고    scopus 로고
    • 3rd edn. (Baltimore and London: Johns Hopkins University Press)
    • G. H. Golub and C. F. van Loan, Matrix Computations, 3rd edn. (Baltimore and London: Johns Hopkins University Press, 1996).
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 9
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • G. H. Golub and C. Reinsch, Singular value decomposition and least squares solutions, Numer. Math. 14(5) (1970) 403-420.
    • (1970) Numer. Math. , vol.14 , Issue.5 , pp. 403-420
    • Golub, G.H.1    Reinsch, C.2
  • 11
    • 33745214236 scopus 로고    scopus 로고
    • First-order approximation of Gram- Schmidt orthonormalization beats deflation in coupled PCA learning rules
    • R. Möller, First-order approximation of Gram- Schmidt orthonormalization beats deflation in coupled PCA learning rules, Neurocomputing 69(13-15) (2006) 1582-1590.
    • (2006) Neurocomputing , vol.69 , Issue.13-15 , pp. 1582-1590
    • Möller, R.1
  • 12
    • 0029343566 scopus 로고
    • Learning in linear neural networks: A survey
    • P. F. Baldi and K. Hornik, Learning in linear neural networks: A survey, IEEE Trans. on Neural Networks 6(4) (1995) 837-858.
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.4 , pp. 837-858
    • Baldi, P.F.1    Hornik, K.2
  • 13
    • 0039678896 scopus 로고
    • Two iterative algorithms for computing the singular value decomposition from input/output samples
    • J. D. Cowan, G. Tesauro and J. Alspector (eds.) 6 (Morgan Kaufmann Publishers, Inc
    • T. D. Sanger, Two iterative algorithms for computing the singular value decomposition from input/output samples, in Adv. Neur., in J. D. Cowan, G. Tesauro and J. Alspector (eds.) 6 (Morgan Kaufmann Publishers, Inc., 1994), pp. 144-151.
    • (1994) Adv. Neur. , pp. 144-151
    • Sanger, T.D.1
  • 14
    • 0028497221 scopus 로고
    • Multilayer neural networks for reduced-rank approximation
    • K. I. Diamantaras and S.-Y. Kung, Multilayer neural networks for reduced-rank approximation, IEEE Trans. on Neural Networks 5(5) (1994) 684-697.
    • (1994) IEEE Trans. on Neural Networks , vol.5 , Issue.5 , pp. 684-697
    • Diamantaras, K.I.1    Kung, S.-Y.2
  • 15
    • 0035440543 scopus 로고    scopus 로고
    • A crossassociative neural network for SVD of nonsquared data matrix in signal processing
    • D.-Z. Feng, Z. Bao and X.-D. Zhang, A crossassociative neural network for SVD of nonsquared data matrix in signal processing, IEEE Trans. on Neural Networks 12(5) (2001) 1215-1221.
    • (2001) IEEE Trans. on Neural Networks , vol.12 , Issue.5 , pp. 1215-1221
    • Feng, D.-Z.1    Bao, Z.2    Zhang, X.-D.3
  • 16
    • 0031169660 scopus 로고    scopus 로고
    • SVD algorithms: APEX-like versus subspace methods
    • A. Weingessel and K. Hornik, SVD algorithms: APEX-like versus subspace methods, Neural Process. Lett. 5 (1997) 177-184.
    • (1997) Neural Process. Lett. , vol.5 , pp. 177-184
    • Weingessel, A.1    Hornik, K.2
  • 18
    • 0001065120 scopus 로고
    • Singular-value decomposition via gradient and self-equivalent flows
    • U. Helmke and J. B. Moore, Singular-value decomposition via gradient and self-equivalent flows, Linear Algebra Appl. 169 (1992) 223-248.
    • (1992) Linear Algebra Appl , vol.169 , pp. 223-248
    • Helmke, U.1    Moore, J.B.2
  • 19
    • 9244222211 scopus 로고    scopus 로고
    • A neural network learning for adaptively extracting crosscorrelation features between two high-dimensional data streams
    • D.-Z. Feng, X.-D. Zhang and Z. Bao, A neural network learning for adaptively extracting crosscorrelation features between two high-dimensional data streams, IEEE Trans. on Neural Networks 15(6) (2004) 1541-1554.
    • (2004) IEEE Trans. on Neural Networks , vol.15 , Issue.6 , pp. 1541-1554
    • Feng, D.-Z.1    Zhang, X.-D.2    Bao, Z.3
  • 20
    • 51449101410 scopus 로고    scopus 로고
    • A logarithmic cost function for principal singular component analysis
    • M. Hasan, A logarithmic cost function for principal singular component analysis, in IEEE Int. Conf. on Acoust. Speech Signal Process., 1933-1936 (2008).
    • (2008) IEEE Int. Conf. on Acoust. Speech Signal Process. , pp. 1933-1936
    • Hasan, M.1
  • 23
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart, G. E. Hinton and R. J. Williams, Learning representations by back-propagating errors, Nature 323(1) (1986) 533-536.
    • (1986) Nature , vol.323 , Issue.1 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 24
    • 0024774330 scopus 로고
    • Neural networks and principal component analysis: Learning from examples without local minima
    • P. F. Baldi and K. Hornik, Neural networks and principal component analysis: learning from examples without local minima, Neural Networks 2(1) (1989) 53-58.
    • (1989) Neural Networks , vol.2 , Issue.1 , pp. 53-58
    • Baldi, P.F.1    Hornik, K.2
  • 25
    • 0024175873 scopus 로고
    • Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems
    • R. W. Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems, in Proc. IEEE Conf. on Decis. Cont. (1988) 799-803.
    • (1988) Proc. IEEE Conf. on Decis. Cont. , pp. 799-803
    • Brockett, R.W.1
  • 26
    • 0026954958 scopus 로고
    • Principal components, minor components, and linear neural networks
    • E. Oja, Principal components, minor components, and linear neural networks, Neural Networks 5(6) (1992) 927-935.
    • (1992) Neural Networks , vol.5 , Issue.6 , pp. 927-935
    • Oja, E.1
  • 27
    • 0032123957 scopus 로고    scopus 로고
    • Fast subspace tracking and neural network learning by a novel information criterion
    • Y. Miao and Y. Hua, Fast subspace tracking and neural network learning by a novel information criterion, IEEE Trans. on Signal Processing 64(7) (1998) 1967-1979.
    • (1998) IEEE Trans. on Signal Processing , vol.64 , Issue.7 , pp. 1967-1979
    • Miao, Y.1    Hua, Y.2
  • 28
    • 0026151838 scopus 로고
    • Dynamical systems that perform the singular value decomposition
    • S. T. Smith, Dynamical systems that perform the singular value decomposition, Syst. Control Lett. 16(5) (1991) 319-327.
    • (1991) Syst. Control Lett. , vol.16 , Issue.5 , pp. 319-327
    • Smith, S.T.1
  • 30
    • 62949173714 scopus 로고    scopus 로고
    • Low-rank approximations with applications to principal singular component learning systems
    • M. A. Hasan, Low-rank approximations with applications to principal singular component learning systems, in Proc. IEEE Conf. on Decis. Contr. (2008) 3293-3298.
    • (2008) Proc. IEEE Conf. on Decis. Contr. , pp. 3293-3298
    • Hasan, M.A.1
  • 31
    • 0027115748 scopus 로고
    • Neural network for singular value decomposition
    • A. Cichocki, Neural network for singular value decomposition, Electron. Lett. 28(8) (1992) 784-786.
    • (1992) Electron. Lett. , vol.28 , Issue.8 , pp. 784-786
    • Cichocki, A.1
  • 32
    • 23644449550 scopus 로고    scopus 로고
    • Real-time computation of singular vectors
    • F.-L. Luo, R. Unbehauen and Y.-D. Li, Real-time computation of singular vectors, Appl. Math. Comput. 86(2-3) (1997) 197-214.
    • (1997) Appl. Math. Comput. , vol.86 , Issue.2-3 , pp. 197-214
    • Luo, F.-L.1    Unbehauen, R.2    Li, Y.-D.3
  • 34
    • 0022013023 scopus 로고
    • On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix
    • E. Oja and J. Karhunen, On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix, J. Math. Anal. Appl. 106(1) (1985) 69-84.
    • (1985) J. Math. Anal. Appl. , vol.106 , Issue.1 , pp. 69-84
    • Oja, E.1    Karhunen, J.2
  • 35
    • 0024867680 scopus 로고
    • Topology-conserving maps for learning visuo-motorcoordination
    • H. J. Ritter, T. M. Martinetz and K. J. Schulten, Topology-conserving maps for learning visuo-motorcoordination, Neural Networks 2(3) (1989) 159-168.
    • (1989) Neural Networks , vol.2 , Issue.3 , pp. 159-168
    • Ritter, H.J.1    Martinetz, T.M.2    Schulten, K.J.3
  • 37
    • 0027632248 scopus 로고
    • 'Neural-gas' network for vector quantization and its application to time-series prediction
    • T. M. Martinetz, S. G. Berkovich and K. J. Schulten, 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Trans. on Neural Networks 4(4) (1993) 558-569.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.