메뉴 건너뛰기




Volumn 19, Issue 6, 2011, Pages 1127-1140

An output-constrained clustering approach for the identification of fuzzy systems and fuzzy granular systems

Author keywords

Clustering; fuzzy granular system; fuzzy system; granular computing; system identification

Indexed keywords

BENCHMARK FUNCTIONS; CLUSTERING; CLUSTERING APPROACH; DYNAMIC SYSTEM IDENTIFICATION; GRANULAR SYSTEM; INPUT DATAS; INPUT-OUTPUT CLUSTERING; NUMBER OF CLUSTERS; STRUCTURE IDENTIFICATION; SYSTEM IDENTIFICATIONS; SYSTEM STRUCTURES;

EID: 82455164494     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2011.2161612     Document Type: Article
Times cited : (28)

References (61)
  • 1
    • 0032138824 scopus 로고    scopus 로고
    • Development of a systematic methodology of fuzzy modeling
    • Aug
    • M. R. Emami, B. Turksen, and A. A. Goldenberg, "Development of a systematic methodology of fuzzy modeling" IEEE Trans. Fuzzy Syst., vol. 6, no. 6, pp. 341-361, Aug. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.6 , pp. 341-361
    • Emami, M.R.1    Turksen, B.2    Goldenberg, A.A.3
  • 2
    • 33947271780 scopus 로고    scopus 로고
    • Logic-based fuzzy neurocomputingwith unineurons
    • Dec
    • W. Pedrycz, "Logic-based fuzzy neurocomputingwith unineurons" IEEE Trans. Fuzzy Syst., vol. 14, no. 6, pp. 860-873, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.6 , pp. 860-873
    • Pedrycz, W.1
  • 3
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Feb
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control" IEEE Trans. Syst., Man Cybern., vol. SMC-15, no. 1, pp. 116-132, Feb. 1985.
    • (1985) IEEE Trans. Syst., Man Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 4
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • San Diego, CA
    • L.-X. Wang, "Fuzzy systems are universal approximators" in Proc. 1st IEEE Conf. Fuzzy Syst., San Diego, CA, 1992, pp. 1163-1169.
    • (1992) Proc. 1st IEEE Conf. Fuzzy Syst. , pp. 1163-1169
    • Wang, L.-X.1
  • 5
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Sep
    • L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning" IEEE Trans. Neural Netw., vol. 3, no. 5, pp. 807-814, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.M.2
  • 6
    • 0028436491 scopus 로고
    • Approximation theory of fuzzy systems-SISO case
    • May
    • X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems-SISO case" IEEE Trans. Fuzzy Syst., vol. 2, no. 2, pp. 162-176, May 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.2 , pp. 162-176
    • Zeng, X.-J.1    Singh, M.G.2
  • 7
    • 84941527251 scopus 로고
    • Approximation theory of fuzzy systems-MIMO case
    • May
    • X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems-MIMO case" IEEE Trans. Fuzzy Syst., vol. 3, no. 2, pp. 219-235, May 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 219-235
    • Zeng, X.-J.1    Singh, M.G.2
  • 8
    • 0003123776 scopus 로고    scopus 로고
    • Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems
    • L. A. Zadeh, "Some reflections on soft computing, granular computing and their roles in the conception, design and utilization of information/intelligent systems" Soft Comput., vol. 2, no. 1, pp. 23-25, 1997.
    • (1997) Soft Comput. , vol.2 , Issue.1 , pp. 23-25
    • Zadeh, L.A.1
  • 10
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S. L. Chiu, "Fuzzy model identification based on cluster estimation" J. Intell. Fuzzy Syst., vol. 2, pp. 267-278, 1994.
    • (1994) J. Intell. Fuzzy Syst. , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 11
    • 45749116590 scopus 로고    scopus 로고
    • Enhanced fuzzy system model with improved fuzzy clustering algorithm
    • Jun
    • A. Celikyilmaz and I. B. Turksen, "Enhanced fuzzy system model with improved fuzzy clustering algorithm" IEEE Trans. Fuzzy Syst., vol. 16, no. 3, pp. 779-794, Jun. 2008.
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.3 , pp. 779-794
    • Celikyilmaz, A.1    Turksen, I.B.2
  • 12
    • 77952550094 scopus 로고    scopus 로고
    • Automatic clustering-based identification of autoregressive fuzzy inferencemodel for time series
    • F. M. Pouzols and A. B. Barros, "Automatic clustering-based identification of autoregressive fuzzy inferencemodel for time series" Neurocomputing, vol. 73, no. 10-12, pp. 1937-1949, 2010.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1937-1949
    • Pouzols, F.M.1    Barros, A.B.2
  • 13
    • 50149097955 scopus 로고    scopus 로고
    • Extracting compact fuzzy rules for nonlinear system modelling using subtractive clustering, GA unscented filter
    • M. Eftekhanri and S. D. Katebi, "Extracting compact fuzzy rules for nonlinear system modelling using subtractive clustering, GA unscented filter" Appl. Math. Modelling, vol. 32, no. 12, pp. 2634-2651, 2008.
    • (2008) Appl. Math. Modelling , vol.32 , Issue.12 , pp. 2634-2651
    • Eftekhanri, M.1    Katebi, S.D.2
  • 14
    • 54049128469 scopus 로고    scopus 로고
    • Identification of piecewise systems by means of fuzzy clustering and competitive learning
    • M. E. Gegundez, K. Aroba, and J. M. Bravo, "Identification of piecewise systems by means of fuzzy clustering and competitive learning" Eng. Appl. Artif. Intell., vol. 21, no. 8, pp. 1321-1329, 2008.
    • (2008) Eng. Appl. Artif. Intell. , vol.21 , Issue.8 , pp. 1321-1329
    • Gegundez, M.E.1    Aroba, K.2    Bravo, J.M.3
  • 15
    • 84889353324 scopus 로고    scopus 로고
    • Algorithms for real-time clustering and generation of rules from data
    • J. V. de Oliveira and W. Pedrycz, Eds. New York: Wiley
    • D. Filev and P. Angelov, "Algorithms for real-time clustering and generation of rules from data" in Advances in Fuzzy Clustering and Its Applications, J. V. de Oliveira and W. Pedrycz, Eds. New York: Wiley, 2007, pp. 353-370.
    • (2007) Advances in Fuzzy Clustering and Its Applications , pp. 353-370
    • Filev, D.1    Angelov, P.2
  • 17
    • 84886838236 scopus 로고    scopus 로고
    • Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+)
    • P. Angelov D. Filev, and N. Kasabov, Eds. New York: Wiley/IEEE Press Series on Computational Intelligence, Apr.
    • P. Angelov, "Evolving Takagi-Sugeno fuzzy systems from data streams (eTS+)" in Evolving Intelligent Systems: Methodology and Applications, P. Angelov, D. Filev, and N. Kasabov, Eds. New York: Wiley/IEEE Press Series on Computational Intelligence, Apr. 2010, pp. 21-50.
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 21-50
    • Angelov, P.1
  • 18
    • 79952309310 scopus 로고    scopus 로고
    • An online predictor model as adaptive habitually linear and transiently nonlinear model
    • A. Kalhor, B. N. Araabi, and C. Lucas, "An online predictor model as adaptive habitually linear and transiently nonlinear model" Evolving Syst., vol. 1, pp. 29-41, 2010.
    • (2010) Evolving Syst. , vol.1 , pp. 29-41
    • Kalhor, A.1    Araabi, B.N.2    Lucas, C.3
  • 19
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • H. Soleimani, C. Lucas and B. N. Araabi, "Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling" Evolving Syst., vol. 1, pp. 59-71, 2010.
    • (2010) Evolving Syst. , vol.1 , pp. 59-71
    • Soleimani, H.1    Lucas, C.2    Araabi, B.N.3
  • 20
    • 0034227542 scopus 로고    scopus 로고
    • Analysis of input-output clustering for determining centers of RBFN
    • Jul
    • Z. Uykan, C. Güzelis, M. E. Çelebi, and H. N. Koivo, "Analysis of input-output clustering for determining centers of RBFN" IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 851-858, Jul. 2000.
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.4 , pp. 851-858
    • Uykan, Z.1    Güzelis, C.2    Çelebi, M.E.3    Koivo, H.N.4
  • 21
    • 14644444539 scopus 로고    scopus 로고
    • An input-output clustering approach to the synthesis of ANFIS networks
    • Feb
    • M. Panella and A. S. Gallo, "An input-output clustering approach to the synthesis of ANFIS networks" IEEE Trans. Fuzzy Syst., vol. 13, no. 1, pp. 69-81, Feb. 2005.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.1 , pp. 69-81
    • Panella, M.1    Gallo, A.S.2
  • 22
    • 0036532520 scopus 로고    scopus 로고
    • Granular clustering: A granular signature of data
    • Apr
    • W. Pedrycz and A. Bargiela, "Granular clustering: A granular signature of data" IEEE Trans. Syst.,Man Cybern., Part B, vol. 32, no. 2, pp. 212-224, Apr. 2002.
    • (2002) IEEE Trans. Syst.,Man Cybern., Part B , vol.32 , Issue.2 , pp. 212-224
    • Pedrycz, W.1    Bargiela, A.2
  • 23
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • F. Gómez-Skarmeta, M. Delgado, andM. A. Vila, "About the use of fuzzy clustering techniques for fuzzy model identification" Fuzzy Sets Syst., vol. 106, no. 2, pp. 179-188, 1999.
    • (1999) Fuzzy Sets Syst. , vol.106 , Issue.2 , pp. 179-188
    • Gómez-Skarmeta, F.1    Delgado, M.2    Vila, M.A.3
  • 24
    • 0031146974 scopus 로고    scopus 로고
    • A fuzzy clusteringbased rapid prototyping for fuzzy rule-based modelling
    • May
    • M. Delgado, A. F. Gomez-Skarmeta, and F. Martin, "A fuzzy clusteringbased rapid prototyping for fuzzy rule-based modelling" IEEE Trans. Fuzzy Syst., vol. 5, no. 2, pp. 223-233, May 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.2 , pp. 223-233
    • Delgado, M.1    Gomez-Skarmeta, A.F.2    Martin, F.3
  • 25
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction
    • K. B. Cho and B. H. Wang, "Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction" Fuzzy Sets Syst., vol. 83, no. 3, pp. 325-339, 1996.
    • (1996) Fuzzy Sets Syst. , vol.83 , Issue.3 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 26
    • 33746326478 scopus 로고    scopus 로고
    • A method for fuzzy system identification based on clustering analysis
    • G. Tsekouras, H. Sarimveis, and G. Befas, "A method for fuzzy system identification based on clustering analysis" SAMS, vol. 46, no. 6, pp. 797-823, 2002.
    • (2002) SAMS , vol.46 , Issue.6 , pp. 797-823
    • Tsekouras, G.1    Sarimveis, H.2    Befas, G.3
  • 27
    • 0027303425 scopus 로고
    • Training of fuzzy logic systems using nearest neighbourhood clustering
    • San Francisco, CA, Mar. 28/Apr. 1
    • L.-X.Wang, "Training of fuzzy logic systems using nearest neighbourhood clustering" in Proc. 2nd IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, Mar. 28/Apr. 1, 1993, vol. 1, pp. 13-17.
    • (1993) Proc. 2nd IEEE Int. Conf. Fuzzy Syst. , vol.1 , pp. 13-17
    • Wang, L.-X.1
  • 28
    • 1142279663 scopus 로고    scopus 로고
    • An approach for fuzzy rule-base adaptation using on-line clustering
    • P. Angelov, "An approach for fuzzy rule-base adaptation using on-line clustering" Int. J. Approx. Reason., vol. 35, no. 3, pp. 275-289, 2004.
    • (2004) Int. J. Approx. Reason. , vol.35 , Issue.3 , pp. 275-289
    • Angelov, P.1
  • 33
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering
    • Sydney, Australia
    • D. Klein, S. D. Kamvar, and C.Manning, "From instance-level constraints to space-level constraints: Making the most of prior knowledge in data clustering" in Proc. 19th Intl. Conf. Mach. Learning, Sydney, Australia, 2002, pp. 307-314.
    • (2002) Proc. 19th Intl. Conf. Mach. Learning , pp. 307-314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.3
  • 35
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Cambridge, MA: MIT Press
    • E. P. Xing, A. Y. Ng,M. I. Jordan, and S. Russell, "Distance metric learning, with application to clustering with side-information" in Advances in Neural Information Processing Systems 15. Cambridge, MA: MIT Press, 2003, pp. 505-512.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 36
    • 0036128824 scopus 로고    scopus 로고
    • A new clustering technique for function approximation
    • Jan
    • J. Gonzalez, H. Rojas, J. Ortega, and A. Prieto, "A new clustering technique for function approximation" IEEE Trans. Neural Networks, vol. 13, no. 1, pp. 132-142, Jan. 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.1 , pp. 132-142
    • Gonzalez, J.1    Rojas, H.2    Ortega, J.3    Prieto, A.4
  • 37
    • 0027228874 scopus 로고
    • Clustering in product space for fuzzy inference
    • H. R. Berenji and P. S. Khedkar, "Clustering in product space for fuzzy inference" in Proc. IEEE Int. Conf. Fuzzy Syst., 1993, vol. 2, pp. 1402-1407.
    • (1993) Proc. IEEE Int. Conf. Fuzzy Syst , vol.2 , pp. 1402-1407
    • Berenji, H.R.1    Khedkar, P.S.2
  • 38
    • 85132025010 scopus 로고
    • Fuzzy function approximation
    • Jun
    • B.Kosko, "Fuzzy function approximation" in Proc. Int. Joint Conf.Neural Netw., Jun. 1992, vol. 1, pp. 209-213.
    • (1992) Proc. Int. Joint Conf.Neural Netw. , vol.1 , pp. 209-213
    • Kosko, B.1
  • 39
    • 0004683439 scopus 로고
    • Construction of fuzzy model through clustering techniques
    • Y. Yoshinari, W. Pedrycz, and K. Hirota, "Construction of fuzzy model through clustering techniques" Fuzzy Sets Syst., vol. 54, no. 2, pp. 157-165, 1993.
    • (1993) Fuzzy Sets Syst. , vol.54 , Issue.2 , pp. 157-165
    • Yoshinari, Y.1    Pedrycz, W.2    Hirota, K.3
  • 40
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational systems
    • P.Witold, "An identification algorithm in fuzzy relational systems" Fuzzy Sets Syst., vol. 13, pp. 153-167, 1984.
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Witold, P.1
  • 41
    • 0030142628 scopus 로고    scopus 로고
    • Constrained fuzzy c-mean algorithm
    • W. Pedrycz, "Constrained fuzzy c-mean algorithm" Pattern Recognit. Lett., vol. 17, no. 6, pp. 625-631, 1996.
    • (1996) Pattern Recognit. Lett. , vol.17 , Issue.6 , pp. 625-631
    • Pedrycz, W.1
  • 42
    • 0032122726 scopus 로고    scopus 로고
    • Context fuzzy clustering in the design of radial basis function neural network
    • W. Pedrycz, "Context fuzzy clustering in the design of radial basis function neural network" IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 601-612, 2002.
    • (2002) IEEE Trans. Neural Netw. , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 43
    • 33749510330 scopus 로고    scopus 로고
    • Linguistic models as a framework of user-centric system modelling
    • Jul
    • W. Pedrycz, "Linguistic models as a framework of user-centric system modelling" IEEE Trans. Syst. ManCybern. Part A, vol. 36, no. 4, pp. 727-745, Jul. 2006.
    • (2006) IEEE Trans. Syst. ManCybern. Part A , vol.36 , Issue.4 , pp. 727-745
    • Pedrycz, W.1
  • 47
    • 33751099067 scopus 로고    scopus 로고
    • A granular computing view on function approximation
    • May 10-12
    • X.-J. Zeng and J. A. Keane, "A granular computing view on function approximation" in Proc. IEEE Int. Conf. Granular Comput., May 10-12, 2006, pp. 232-237.
    • (2006) Proc. IEEE Int. Conf. Granular Comput. , pp. 232-237
    • Zeng, X.-J.1    Keane, J.A.2
  • 48
    • 8744290647 scopus 로고    scopus 로고
    • Robust agglomerative clustering algorithm for fuzzy modelling purposes
    • Boston, MA, Jun. 30/Jul.
    • V. H. Grisales, J. J. Soriano, S. Barato, and D. M. Gonzalez, "Robust agglomerative clustering algorithm for fuzzy modelling purposes" in Proc. Amer. Control Conf., Boston, MA, Jun. 30/Jul. 2, 2004, pp. 1782-1787.
    • (2004) Proc. Amer. Control Conf. , vol.2 , pp. 1782-1787
    • Grisales, V.H.1    Soriano, J.J.2    Barato, S.3    Gonzalez, D.M.4
  • 49
    • 0027544110 scopus 로고
    • A fuzzy-logic based approach to qualitative modelling
    • Feb
    • M. Sugeno and T. Yasukawa, "A fuzzy-logic based approach to qualitative modelling" IEEE Trans. Fuzzy Syst., vol. 1, no. 1, pp. 7-31, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 50
    • 14644443622 scopus 로고    scopus 로고
    • On the use of the weighted fuzzy C-means in fuzzy modelling
    • G. E. Tsekouras, "On the use of the weighted fuzzy C-means in fuzzy modelling" Adv. Eng. Software, vol. 36, no. 5, pp. 287-300, 2005.
    • (2005) Adv. Eng. Software , vol.36 , Issue.5 , pp. 287-300
    • Tsekouras, G.E.1
  • 51
    • 0031208215 scopus 로고    scopus 로고
    • A new approach to fuzzy modelling
    • Aug
    • E. Kim, M. Park, and S. Ji, "A new approach to fuzzy modelling" IEEE Trans. Fuzzy Syst., vol. 5, no. 3, pp. 328-337, Aug. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.3 , pp. 328-337
    • Kim, E.1    Park, M.2    Ji, S.3
  • 52
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Oct
    • J. Abonyi, R. Babuska, and F. Szeifert, "Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models" IEEE Trans. Syst., Man Cybern., Part B, vol. 32, no. 5, pp. 612-621, Oct. 1999.
    • (1999) IEEE Trans. Syst., Man Cybern., Part B , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuska, R.2    Szeifert, F.3
  • 53
    • 0031988675 scopus 로고    scopus 로고
    • Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms andKalman filter
    • L.Wang and J. Yen, "Extracting fuzzy rules for system modelling using a hybrid of genetic algorithms andKalman filter" Fuzzy Syst. Sets, vol. 101, no. 3, pp. 353-362, 1999.
    • (1999) Fuzzy Syst. Sets , vol.101 , Issue.3 , pp. 353-362
    • Wang, L.1    Yen, J.2
  • 54
    • 0032136218 scopus 로고    scopus 로고
    • Application of statistical information criteria for optimal fuzzy model construction
    • Aug
    • J. Yen and L. Wang, "Application of statistical information criteria for optimal fuzzy model construction" IEEE Trans, Fuzzy Syst., vol. 6, no. 3, pp. 362-371, Aug. 1998.
    • (1998) IEEE Trans, Fuzzy Syst. , vol.6 , Issue.3 , pp. 362-371
    • Yen, J.1    Wang, L.2
  • 55
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • Feb
    • J. Yen and L. Wang, "Simplifying fuzzy rule-based models using orthogonal transformation methods" IEEE Trans. Syst., Man Cybern., Part B, vol. 29, no. 1, pp. 13-24, Feb. 1999.
    • (1999) IEEE Trans. Syst., Man Cybern., Part B , vol.29 , Issue.1 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 56
    • 82455189840 scopus 로고    scopus 로고
    • [Online]. Available
    • (2011). [Online]. Available: ftp://ics.uci.edu/pub/machine- learningdatabase/auto-mpg
    • (2011)
  • 57
    • 55949110248 scopus 로고    scopus 로고
    • A granular-oriented development of functional radial basis function neural networks
    • W. Pedrycz, H. S. Park, and S. K. Ohd, "A granular-oriented development of functional radial basis function neural networks" Neurocomputing, vol. 72, no. 1-3, pp. 420-435, 2008.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 420-435
    • Pedrycz, W.1    Park, H.S.2    Ohd, S.K.3
  • 58
    • 77950628563 scopus 로고    scopus 로고
    • The design methodology of radial basis function neural networks, based on fuzzy K-nearest neighbors approach
    • S.-B. Roha, T.-C. Ahna, and W. Pedrycz, "The design methodology of radial basis function neural networks, based on fuzzy K-nearest neighbors approach" Fuzzy Sets Syst., vol. 161, no. 13, pp. 1803-1822, 2010.
    • (2010) Fuzzy Sets Syst. , vol.161 , Issue.13 , pp. 1803-1822
    • Roha, S.-B.1    Ahna, T.-C.2    Pedrycz, W.3
  • 59
    • 82455166273 scopus 로고    scopus 로고
    • [Online]. Available
    • (2011). [Online]. Available: http://lib.stat.cmu.edu/datasets/
    • (2011)
  • 60
    • 77955504076 scopus 로고    scopus 로고
    • An evolving-construction scheme for fuzzy systems
    • Aug
    • D.Wang, X.-J. Zeng, and J. A. Keane, "An evolving-construction scheme for fuzzy systems" IEEE Trans. Fuzzy Syst., vol. 18, no. 4, pp. 755-770, Aug. 2010.
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.4 , pp. 755-770
    • Wang, D.1    Zeng, X.-J.2    Keane, J.A.3
  • 61
    • 36448929160 scopus 로고    scopus 로고
    • A comparative study of two approaches for data-driven design of evolving fuzzy systems: ETS and FLEXFIS
    • P. Angelov and E. Lughofer, "A comparative study of two approaches for data-driven design of evolving fuzzy systems: ETS and FLEXFIS" Int. J. General Syst., vol. 37, no. 1, pp. 45-67, 2008.
    • (2008) Int. J. General Syst. , vol.37 , Issue.1 , pp. 45-67
    • Angelov, P.1    Lughofer, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.