-
1
-
-
0032138824
-
Development of a systematic methodology of fuzzy modeling
-
Aug.
-
M. R. Emami, B. Turksen, and A. A. Goldenberg, "Development of a systematic methodology of fuzzy modeling," IEEE Trans. Fuzzy Syst., vol.6, no.3, pp. 346-361, Aug. 1998.
-
(1998)
IEEE Trans. Fuzzy Syst.
, vol.6
, Issue.3
, pp. 346-361
-
-
Emami, M.R.1
Turksen, B.2
Goldenberg, A.A.3
-
2
-
-
33947271780
-
Logic-based fuzzy neurocomputingwith unineurons
-
Dec.
-
W. Pedrycz, "Logic-based fuzzy neurocomputingwith unineurons," IEEE Trans. Fuzzy Syst., vol.14, no.6, pp. 860-873, Dec. 2006.
-
(2006)
IEEE Trans. Fuzzy Syst.
, vol.14
, Issue.6
, pp. 860-873
-
-
Pedrycz, W.1
-
3
-
-
0021892282
-
Fuzzy identification of systems and its applications to modeling and control
-
Feb.
-
T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man Cybern., vol.SMC-15, no.1, pp. 116-132, Feb. 1985.
-
(1985)
IEEE Trans. Syst., Man Cybern.
, vol.SMC-15
, Issue.1
, pp. 116-132
-
-
Takagi, T.1
Sugeno, M.2
-
4
-
-
0026994365
-
Fuzzy systems are universal approximators
-
presented at the , San Diego, CA
-
L.-X. Wang, "Fuzzy systems are universal approximators," presented at the 1st IEEE Int. Conf. Fuzzy Syst., San Diego, CA, 1992.
-
(1992)
1st IEEE Int. Conf. Fuzzy Syst.
-
-
Wang, L.-X.1
-
5
-
-
0026928374
-
Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
-
Sep.
-
L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. Neural Netw., vol.3, no.5, pp. 807-814, Sep. 1992.
-
(1992)
IEEE Trans. Neural Netw.
, vol.3
, Issue.5
, pp. 807-814
-
-
Wang, L.-X.1
Mendel, J.M.2
-
6
-
-
0028436491
-
Approximation theory of fuzzy systems- SISO case
-
May
-
X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems- SISO case," IEEE Trans. Fuzzy Syst., vol.2, no.2, pp. 162-176, May 1994.
-
(1994)
IEEE Trans. Fuzzy Syst.
, vol.2
, Issue.2
, pp. 162-176
-
-
Zeng, X.-J.1
Singh, M.G.2
-
7
-
-
84941527251
-
Approximation theory of fuzzy systems- MIMO case
-
May
-
X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems- MIMO case," IEEE Trans. Fuzzy Syst., vol.3, no.2, pp. 219-235, May 1995.
-
(1995)
IEEE Trans. Fuzzy Syst.
, vol.3
, Issue.2
, pp. 219-235
-
-
Zeng, X.-J.1
Singh, M.G.2
-
8
-
-
4243363593
-
Data-driven fuzzy modeling: Transparency and complexity issues
-
Presented at the, Crete, Greece
-
R. Babuska, "Data-driven fuzzy modeling: Transparency and complexity issues," presented at the 2nd Eur. Symp. Intell. Tech., Crete, Greece, 1999.
-
(1999)
2nd Eur. Symp. Intell. Tech.
-
-
Babuska, R.1
-
10
-
-
77955499342
-
Evolving fuzzy systems
-
P. Angelov,D. Filev,N. Kasabov,O. Cordon Eds.,Piscataway, NJ: IEEE Press
-
P. Angelov, D. Filev, N. Kasabov, and O. Cordon, Eds., "Evolving fuzzy systems," in Proc. 2006 Int. Symp. Evolving Fuzzy Syst. Piscataway, NJ: IEEE Press, 2006.
-
(2006)
Proc. 2006 Int. Symp. Evolving Fuzzy Syst.
-
-
-
11
-
-
0742272554
-
An approach to online identification of Takagi-Sugeno fuzzy models
-
Feb.
-
P. Angelov and D. P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst. Man Cybern. B, Cybern., vol.34, no.1, pp. 484-498, Feb. 2004.
-
(2004)
IEEE Trans. Syst. Man Cybern. B, Cybern.
, vol.34
, Issue.1
, pp. 484-498
-
-
Angelov, P.1
Filev, D.P.2
-
12
-
-
23944495345
-
SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
-
P. Angelov and D. Filev, "SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proc. 14th IEEE Int. Conf. Fuzzy Syst., 2005, pp. 1068-1073.
-
(2005)
Proc. 14th IEEE Int. Conf. Fuzzy Syst.
, pp. 1068-1073
-
-
Angelov, P.1
Filev, D.2
-
13
-
-
34247532567
-
Evolving fuzzy systems from data streams in real-time
-
Lake District, U.K.: IEEE Press
-
P. Angelov and X. Zhou, "Evolving fuzzy systems from data streams in real-time," in Proc. Int. Symp. Evolving Fuzzy Syst. Lake District, U.K.: IEEE Press, 2006, pp. 26-32.
-
(2006)
Proc. Int. Symp. Evolving Fuzzy Syst.
, pp. 26-32
-
-
Angelov, P.1
Zhou, X.2
-
14
-
-
6344273609
-
Dynamic evolving neuro-fuzzy inference system (DENFIS): On-line learning and application for time series prediction
-
Presented at the, Iizuka, Japan
-
N. Kasabov and Q. Song, "Dynamic evolving neuro-fuzzy inference system (DENFIS): On-line learning and application for time series prediction," presented at the 6th Int. Conf. Soft Comput., Iizuka, Japan, 2000.
-
(2000)
6th Int. Conf. Soft Comput.
-
-
Kasabov, N.1
Song, Q.2
-
15
-
-
0036530967
-
DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
-
Apr.
-
N. K. Kasabov, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol.10, no.2, pp. 144-154, Apr. 2002.
-
(2002)
IEEE Trans. Fuzzy Syst.
, vol.10
, Issue.2
, pp. 144-154
-
-
Kasabov, N.K.1
-
16
-
-
33746650774
-
Local linear model trees (LOLIMOT) toolbox for nonlinear system identification
-
presented at the , Identification, Santa Barbara, CA
-
O. Nelles, A. Fink, and R. Isermann, "Local linear model trees (LOLIMOT) toolbox for nonlinear system identification," presented at the 12th IFAC Symp. Syst. Identification, Santa Barbara, CA, 2000.
-
(2000)
12th IFAC Symp. Syst.
-
-
Nelles, O.1
Fink, A.2
Isermann, R.3
-
17
-
-
84902179039
-
Local linear model trees for on-line identification of timevariant nonlinear dynamic systems
-
O. Nelles, "Local linear model trees for on-line identification of timevariant nonlinear dynamic systems," inProc. Int. Conf. Artif. Neural Netw., 1996, pp. 115-120.
-
(1996)
Proc. Int. Conf. Artif. Neural Netw.
, pp. 115-120
-
-
Nelles, O.1
-
18
-
-
11244351634
-
An approach for on-line extraction of fuzzy rules using a sefl-organising fuzzy neural network
-
G. Leng, T. M. McGinnity, and G. Prasad, "An approach for on-line extraction of fuzzy rules using a sefl-organising fuzzy neural network," Fuzzy Sets Syst., vol.150, pp. 211-243, 2005.
-
(2005)
Fuzzy Sets Syst.
, vol.150
, pp. 211-243
-
-
Leng, G.1
McGinnity, T.M.2
Prasad, G.3
-
19
-
-
8444234276
-
An on-line algorithm for creating self-organising fuzzy neural networks
-
G. Leng, G. Prasad, and T. M. McGinnity, "An on-line algorithm for creating self-organising fuzzy neural networks," Neural Netw., vol.17, pp. 1477-1493, 2004.
-
(2004)
Neural Netw.
, vol.17
, pp. 1477-1493
-
-
Leng, G.1
Prasad, G.2
McGinnity, T.M.3
-
20
-
-
33645070541
-
Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
-
H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol.157, pp. 1260-1275, 2006.
-
(2006)
Fuzzy Sets Syst.
, vol.157
, pp. 1260-1275
-
-
Rong, H.J.1
Sundararajan, N.2
Huang, G.B.3
Saratchandran, P.4
-
21
-
-
27744567233
-
Matroid and the greedy algorithm
-
E. Jack, "Matroid and the greedy algorithm," Math. Program., vol.1, pp. 127-136, 1971.
-
(1971)
Math. Program.
, vol.1
, pp. 127-136
-
-
Jack, E.1
-
22
-
-
84987481205
-
Mathematical structures underlying greedy algorithms
-
Fundamentals of Computation Theory (Lecture Notes in Comput. Sci., F. Gecseg, Ed. Berlin, Germany: Springer-Verlag
-
K. Bernard and L. Ĺazsĺo, "Mathematical structures underlying greedy algorithms," in Proc. Int. FCT-Conf., Fundamentals of Computation Theory (Lecture Notes in Comput. Sci., vol. 117), F. Gecseg, Ed. Berlin, Germany: Springer-Verlag, 1981, pp. 205-209.
-
(1981)
Proc. Int. FCT-Conf.
, vol.117
, pp. 205-209
-
-
Bernard, K.1
Ĺazsĺo, L.2
-
24
-
-
0034503980
-
Necessary conditions on minimal system configuration for generalMISOmamdani fuzzy systems as universal approximators
-
Dec.
-
Y. S. Ding, H. Ying, and S. H. Shao, "Necessary conditions on minimal system configuration for generalMISOmamdani fuzzy systems as universal approximators," IEEE Trans. Syst. Man Cybern. B, Cybern., vol.30, no.6, pp. 857-864, Dec. 2000.
-
(2000)
IEEE Trans. Syst. Man Cybern. B, Cybern.
, vol.30
, Issue.6
, pp. 857-864
-
-
Ding, Y.S.1
Ying, H.2
Shao, S.H.3
-
25
-
-
33749510330
-
Linguistic models as a framework of user-centric system modeling
-
DOI 10.1109/TSMCA.2005.855755
-
W. Pedrycz, "Linguistic models as a framework of user-centric system modeling," IEEE Trans. Syst. Man Cybern. A, Syst., Humans, vol.36, no.4, pp. 727-745, Jul. 2006. (Pubitemid 46405303)
-
(2006)
IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans
, vol.36
, Issue.4
, pp. 727-745
-
-
Pedrycz, W.1
Kwak, K.-C.2
-
26
-
-
0031208215
-
A new approach to fuzzy modeling
-
Aug.
-
E. Kim, M. Park, S. Ji, and M. Park, "A new approach to fuzzy modeling," IEEE Trans. Fuzzy Syst., vol.5, no.3, pp. 328-337, Aug. 1997.
-
(1997)
IEEE Trans. Fuzzy Syst.
, vol.5
, Issue.3
, pp. 328-337
-
-
Kim, E.1
Park, M.2
Ji, S.3
Park, M.4
-
27
-
-
14644443622
-
On the use of the weighted fuzzy C-means in fuzzy modeling
-
G. E. Tsekouras, "On the use of the weighted fuzzy C-means in fuzzy modeling," Int. J. Adv. Eng. Softw., vol.36, pp. 287-300, 2005.
-
(2005)
Int. J. Adv. Eng. Softw.
, vol.36
, pp. 287-300
-
-
Tsekouras, G.E.1
-
28
-
-
0027544110
-
A fuzzy-logic based approach to qualitative modeling
-
Feb.
-
M. Sugeno and T. Yasukawa, "A fuzzy-logic based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., vol.1, no.1, pp. 7-31, Feb. 1993.
-
(1993)
IEEE Trans. Fuzzy Syst.
, vol.1
, Issue.1
, pp. 7-31
-
-
Sugeno, M.1
Yasukawa, T.2
-
29
-
-
77955496247
-
-
[Online]. Available
-
[Online]. Available: http://lib.stat.cmu.edu/datasets/
-
-
-
-
30
-
-
0033692531
-
Dynamic fuzzy neural networks-A novel approach to function approximation
-
Apr.
-
S. Wu and M. J. Er, "Dynamic fuzzy neural networks-A novel approach to function approximation," IEEE Trans. Syst. Man Cybern. B, vol.30, no.2, pp. 358-364, Apr. 2000.
-
(2000)
IEEE Trans. Syst. Man Cybern. B
, vol.30
, Issue.2
, pp. 358-364
-
-
Wu, S.1
Er, M.J.2
-
31
-
-
0035415951
-
A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
-
Aug.
-
S.Wu, M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol.9, no.4, pp. 578-594, Aug. 2001.
-
(2001)
IEEE Trans. Fuzzy Syst.
, vol.9
, Issue.4
, pp. 578-594
-
-
Wu, S.1
Er, M.J.2
Gao, Y.3
-
32
-
-
0031568361
-
A sequential learning scheme for function approximation using minimal radial basis function neural networks
-
L. Yingwei, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Comput., vol.9, pp. 461-478, 1997. (Pubitemid 127635401)
-
(1997)
Neural Computation
, vol.9
, Issue.2
, pp. 461-478
-
-
Lu, Y.1
Sundararajan, N.2
Saratchandran, P.3
-
33
-
-
0001553560
-
A function estimation approach to sequential learning with neural networks
-
Nov.
-
V. Kadirkamanathan andM. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Comput., vol.5, no.6, pp. 954-975, Nov. 1993.
-
(1993)
Neural Comput.
, vol.5
, Issue.6
, pp. 954-975
-
-
Kadirkamanathan, V.1
Niranjan, M.2
-
34
-
-
0031988675
-
Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter
-
L. Wang and J. Yen, "Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter," Fuzzy Sets Syst., vol.101, pp. 353-362, 1999.
-
(1999)
Fuzzy Sets Syst.
, vol.101
, pp. 353-362
-
-
Wang, L.1
Yen, J.2
-
35
-
-
0000773486
-
A growing neural gas network learns topologies
-
B. Fritze, "A growing neural gas network learns topologies," Adv. Neural Inf. Process. Syst., vol.7, pp. 1-8, 1995.
-
(1995)
Adv. Neural Inf. Process. Syst.
, vol.7
, pp. 1-8
-
-
Fritze, B.1
-
36
-
-
0001071040
-
A resource allocating network for function interpolation
-
J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol.3, pp. 213-225, 1991.
-
(1991)
Neural Comput.
, vol.3
, pp. 213-225
-
-
Platt, J.1
-
37
-
-
77955481654
-
Evolving self-organizing maps for online learning, data analysis and modeling
-
presented at the, New York
-
D. Deng and N. Kasabov, "Evolving self-organizing maps for online learning, data analysis and modeling," presented at the Int. Joint Conf. Neural Netw., New York, 2000.
-
(2000)
Int. Joint Conf. Neural Netw.
-
-
Deng, D.1
Kasabov, N.2
-
38
-
-
0001961635
-
Evolving fuzzy neural networks-Algorithms, applications and biological motivation
-
T. Yamakawa and G. Matsumoto, Eds. Singapore: World Scientific
-
N. Kasabov, "Evolving fuzzy neural networks-Algorithms, applications and biological motivation," in Methodologies for Conception Design and Application of Soft Computing, T. Yamakawa and G. Matsumoto, Eds. Singapore: World Scientific, 1998, pp. 217-274.
-
(1998)
Methodologies for Conception Design and Application of Soft Computing
, pp. 217-274
-
-
Kasabov, N.1
-
39
-
-
33947311376
-
Inferring operating rules for reservoir operations using fuzzy regression and ANFIS
-
S. J. Mousavi, K. Ponnambalam, and F. Karray, "Inferring operating rules for reservoir operations using fuzzy regression and ANFIS," Fuzzy Sets Syst., vol.158, pp. 1064-11062, 2007.
-
(2007)
Fuzzy Sets Syst.
, vol.158
, pp. 1064-11062
-
-
Mousavi, S.J.1
Ponnambalam, K.2
Karray, F.3
-
40
-
-
33947267506
-
Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images
-
H. Qin and S. X. Yang, "Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images," Fuzzy Sets Syst., vol.158, pp. 1036-1063, 2007.
-
(2007)
Fuzzy Sets Syst.
, vol.158
, pp. 1036-1063
-
-
Qin, H.1
Yang, S.X.2
-
41
-
-
33747605322
-
Adaptive fuzzy-neural-network control DSPbased permanent magnet linear synchronous motor servo drive
-
Aug.
-
F.-J. Lin and P.-H. Shen, "Adaptive fuzzy-neural-network control DSPbased permanent magnet linear synchronous motor servo drive," IEEE Trans. Fuzzy Syst., vol.14, no.4, pp. 481-495, Aug. 2006.
-
(2006)
IEEE Trans. Fuzzy Syst.
, vol.14
, Issue.4
, pp. 481-495
-
-
Lin, F.-J.1
Shen, P.-H.2
-
42
-
-
0027702852
-
Efficient fuzzy partition of pattern space for classification problems
-
H. Ishibuchi, K. Nozaki, and H. Tanaka, "Efficient fuzzy partition of pattern space for classification problems," Fuzzy Sets Syst., vol.59, pp. 295- 304, 1993.
-
(1993)
Fuzzy Sets Syst.
, vol.59
, pp. 295-304
-
-
Ishibuchi, H.1
Nozaki, K.2
Tanaka, H.3
-
43
-
-
0029244502
-
Optimal fuzzy rules cover extrema
-
B.Kosko, "Optimal fuzzy rules cover extrema," Int. J. Intell. Syst., vol.10, no.2, pp. 249-255, 1995.
-
(1995)
Int. J. Intell. Syst.
, vol.10
, Issue.2
, pp. 249-255
-
-
Kosko, B.1
-
44
-
-
55249093161
-
An incremental construction learning algorithm for identification of TS Fuzzy Systems
-
Hong Kong
-
D. Wang, X.-J. Zeng, and J. A. Keane, "An incremental construction learning algorithm for identification of TS Fuzzy Systems," in Proc. IEEE Int. Conf. Fuzzy Syst., Hong Kong, 2008, pp. 1660-1666.
-
(2008)
Proc. IEEE Int. Conf. Fuzzy Syst.
, pp. 1660-1666
-
-
Wang, D.1
Zeng, X.-J.2
Keane, J.A.3
|