메뉴 건너뛰기




Volumn 18, Issue 4, 2010, Pages 755-770

An evolving-construction scheme for fuzzy systems

Author keywords

Evolving construction; function approximation; greedy algorithm; incremental learning

Indexed keywords

APPROXIMATED FUNCTIONS; CONSTRUCTION SCHEME; EXTREME POINTS; FUNCTION APPROXIMATION; GREEDY ALGORITHMS; INCREMENTAL LEARNING; INFLEXION POINT; SIMULATION RESULT; SYSTEM IDENTIFICATIONS;

EID: 77955504076     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2010.2047949     Document Type: Article
Times cited : (32)

References (44)
  • 1
    • 0032138824 scopus 로고    scopus 로고
    • Development of a systematic methodology of fuzzy modeling
    • Aug.
    • M. R. Emami, B. Turksen, and A. A. Goldenberg, "Development of a systematic methodology of fuzzy modeling," IEEE Trans. Fuzzy Syst., vol.6, no.3, pp. 346-361, Aug. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.3 , pp. 346-361
    • Emami, M.R.1    Turksen, B.2    Goldenberg, A.A.3
  • 2
    • 33947271780 scopus 로고    scopus 로고
    • Logic-based fuzzy neurocomputingwith unineurons
    • Dec.
    • W. Pedrycz, "Logic-based fuzzy neurocomputingwith unineurons," IEEE Trans. Fuzzy Syst., vol.14, no.6, pp. 860-873, Dec. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.6 , pp. 860-873
    • Pedrycz, W.1
  • 3
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Feb.
    • T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE Trans. Syst., Man Cybern., vol.SMC-15, no.1, pp. 116-132, Feb. 1985.
    • (1985) IEEE Trans. Syst., Man Cybern. , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 4
    • 0026994365 scopus 로고
    • Fuzzy systems are universal approximators
    • presented at the , San Diego, CA
    • L.-X. Wang, "Fuzzy systems are universal approximators," presented at the 1st IEEE Int. Conf. Fuzzy Syst., San Diego, CA, 1992.
    • (1992) 1st IEEE Int. Conf. Fuzzy Syst.
    • Wang, L.-X.1
  • 5
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least-squares learning
    • Sep.
    • L.-X. Wang and J. M. Mendel, "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning," IEEE Trans. Neural Netw., vol.3, no.5, pp. 807-814, Sep. 1992.
    • (1992) IEEE Trans. Neural Netw. , vol.3 , Issue.5 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.M.2
  • 6
    • 0028436491 scopus 로고
    • Approximation theory of fuzzy systems- SISO case
    • May
    • X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems- SISO case," IEEE Trans. Fuzzy Syst., vol.2, no.2, pp. 162-176, May 1994.
    • (1994) IEEE Trans. Fuzzy Syst. , vol.2 , Issue.2 , pp. 162-176
    • Zeng, X.-J.1    Singh, M.G.2
  • 7
    • 84941527251 scopus 로고
    • Approximation theory of fuzzy systems- MIMO case
    • May
    • X.-J. Zeng and M. G. Singh, "Approximation theory of fuzzy systems- MIMO case," IEEE Trans. Fuzzy Syst., vol.3, no.2, pp. 219-235, May 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.2 , pp. 219-235
    • Zeng, X.-J.1    Singh, M.G.2
  • 8
    • 4243363593 scopus 로고    scopus 로고
    • Data-driven fuzzy modeling: Transparency and complexity issues
    • Presented at the, Crete, Greece
    • R. Babuska, "Data-driven fuzzy modeling: Transparency and complexity issues," presented at the 2nd Eur. Symp. Intell. Tech., Crete, Greece, 1999.
    • (1999) 2nd Eur. Symp. Intell. Tech.
    • Babuska, R.1
  • 10
    • 77955499342 scopus 로고    scopus 로고
    • Evolving fuzzy systems
    • P. Angelov,D. Filev,N. Kasabov,O. Cordon Eds.,Piscataway, NJ: IEEE Press
    • P. Angelov, D. Filev, N. Kasabov, and O. Cordon, Eds., "Evolving fuzzy systems," in Proc. 2006 Int. Symp. Evolving Fuzzy Syst. Piscataway, NJ: IEEE Press, 2006.
    • (2006) Proc. 2006 Int. Symp. Evolving Fuzzy Syst.
  • 11
    • 0742272554 scopus 로고    scopus 로고
    • An approach to online identification of Takagi-Sugeno fuzzy models
    • Feb.
    • P. Angelov and D. P. Filev, "An approach to online identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst. Man Cybern. B, Cybern., vol.34, no.1, pp. 484-498, Feb. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 484-498
    • Angelov, P.1    Filev, D.P.2
  • 12
    • 23944495345 scopus 로고    scopus 로고
    • SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • P. Angelov and D. Filev, "SimpleTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proc. 14th IEEE Int. Conf. Fuzzy Syst., 2005, pp. 1068-1073.
    • (2005) Proc. 14th IEEE Int. Conf. Fuzzy Syst. , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 13
    • 34247532567 scopus 로고    scopus 로고
    • Evolving fuzzy systems from data streams in real-time
    • Lake District, U.K.: IEEE Press
    • P. Angelov and X. Zhou, "Evolving fuzzy systems from data streams in real-time," in Proc. Int. Symp. Evolving Fuzzy Syst. Lake District, U.K.: IEEE Press, 2006, pp. 26-32.
    • (2006) Proc. Int. Symp. Evolving Fuzzy Syst. , pp. 26-32
    • Angelov, P.1    Zhou, X.2
  • 14
    • 6344273609 scopus 로고    scopus 로고
    • Dynamic evolving neuro-fuzzy inference system (DENFIS): On-line learning and application for time series prediction
    • Presented at the, Iizuka, Japan
    • N. Kasabov and Q. Song, "Dynamic evolving neuro-fuzzy inference system (DENFIS): On-line learning and application for time series prediction," presented at the 6th Int. Conf. Soft Comput., Iizuka, Japan, 2000.
    • (2000) 6th Int. Conf. Soft Comput.
    • Kasabov, N.1    Song, Q.2
  • 15
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Apr.
    • N. K. Kasabov, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol.10, no.2, pp. 144-154, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1
  • 16
    • 33746650774 scopus 로고    scopus 로고
    • Local linear model trees (LOLIMOT) toolbox for nonlinear system identification
    • presented at the , Identification, Santa Barbara, CA
    • O. Nelles, A. Fink, and R. Isermann, "Local linear model trees (LOLIMOT) toolbox for nonlinear system identification," presented at the 12th IFAC Symp. Syst. Identification, Santa Barbara, CA, 2000.
    • (2000) 12th IFAC Symp. Syst.
    • Nelles, O.1    Fink, A.2    Isermann, R.3
  • 17
    • 84902179039 scopus 로고    scopus 로고
    • Local linear model trees for on-line identification of timevariant nonlinear dynamic systems
    • O. Nelles, "Local linear model trees for on-line identification of timevariant nonlinear dynamic systems," inProc. Int. Conf. Artif. Neural Netw., 1996, pp. 115-120.
    • (1996) Proc. Int. Conf. Artif. Neural Netw. , pp. 115-120
    • Nelles, O.1
  • 18
    • 11244351634 scopus 로고    scopus 로고
    • An approach for on-line extraction of fuzzy rules using a sefl-organising fuzzy neural network
    • G. Leng, T. M. McGinnity, and G. Prasad, "An approach for on-line extraction of fuzzy rules using a sefl-organising fuzzy neural network," Fuzzy Sets Syst., vol.150, pp. 211-243, 2005.
    • (2005) Fuzzy Sets Syst. , vol.150 , pp. 211-243
    • Leng, G.1    McGinnity, T.M.2    Prasad, G.3
  • 19
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organising fuzzy neural networks
    • G. Leng, G. Prasad, and T. M. McGinnity, "An on-line algorithm for creating self-organising fuzzy neural networks," Neural Netw., vol.17, pp. 1477-1493, 2004.
    • (2004) Neural Netw. , vol.17 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 20
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol.157, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 21
    • 27744567233 scopus 로고
    • Matroid and the greedy algorithm
    • E. Jack, "Matroid and the greedy algorithm," Math. Program., vol.1, pp. 127-136, 1971.
    • (1971) Math. Program. , vol.1 , pp. 127-136
    • Jack, E.1
  • 22
    • 84987481205 scopus 로고
    • Mathematical structures underlying greedy algorithms
    • Fundamentals of Computation Theory (Lecture Notes in Comput. Sci., F. Gecseg, Ed. Berlin, Germany: Springer-Verlag
    • K. Bernard and L. Ĺazsĺo, "Mathematical structures underlying greedy algorithms," in Proc. Int. FCT-Conf., Fundamentals of Computation Theory (Lecture Notes in Comput. Sci., vol. 117), F. Gecseg, Ed. Berlin, Germany: Springer-Verlag, 1981, pp. 205-209.
    • (1981) Proc. Int. FCT-Conf. , vol.117 , pp. 205-209
    • Bernard, K.1    Ĺazsĺo, L.2
  • 24
    • 0034503980 scopus 로고    scopus 로고
    • Necessary conditions on minimal system configuration for generalMISOmamdani fuzzy systems as universal approximators
    • Dec.
    • Y. S. Ding, H. Ying, and S. H. Shao, "Necessary conditions on minimal system configuration for generalMISOmamdani fuzzy systems as universal approximators," IEEE Trans. Syst. Man Cybern. B, Cybern., vol.30, no.6, pp. 857-864, Dec. 2000.
    • (2000) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.30 , Issue.6 , pp. 857-864
    • Ding, Y.S.1    Ying, H.2    Shao, S.H.3
  • 26
    • 0031208215 scopus 로고    scopus 로고
    • A new approach to fuzzy modeling
    • Aug.
    • E. Kim, M. Park, S. Ji, and M. Park, "A new approach to fuzzy modeling," IEEE Trans. Fuzzy Syst., vol.5, no.3, pp. 328-337, Aug. 1997.
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.3 , pp. 328-337
    • Kim, E.1    Park, M.2    Ji, S.3    Park, M.4
  • 27
    • 14644443622 scopus 로고    scopus 로고
    • On the use of the weighted fuzzy C-means in fuzzy modeling
    • G. E. Tsekouras, "On the use of the weighted fuzzy C-means in fuzzy modeling," Int. J. Adv. Eng. Softw., vol.36, pp. 287-300, 2005.
    • (2005) Int. J. Adv. Eng. Softw. , vol.36 , pp. 287-300
    • Tsekouras, G.E.1
  • 28
    • 0027544110 scopus 로고
    • A fuzzy-logic based approach to qualitative modeling
    • Feb.
    • M. Sugeno and T. Yasukawa, "A fuzzy-logic based approach to qualitative modeling," IEEE Trans. Fuzzy Syst., vol.1, no.1, pp. 7-31, Feb. 1993.
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 29
    • 77955496247 scopus 로고    scopus 로고
    • [Online]. Available
    • [Online]. Available: http://lib.stat.cmu.edu/datasets/
  • 30
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks-A novel approach to function approximation
    • Apr.
    • S. Wu and M. J. Er, "Dynamic fuzzy neural networks-A novel approach to function approximation," IEEE Trans. Syst. Man Cybern. B, vol.30, no.2, pp. 358-364, Apr. 2000.
    • (2000) IEEE Trans. Syst. Man Cybern. B , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 31
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Aug.
    • S.Wu, M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol.9, no.4, pp. 578-594, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 32
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function neural networks
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Comput., vol.9, pp. 461-478, 1997. (Pubitemid 127635401)
    • (1997) Neural Computation , vol.9 , Issue.2 , pp. 461-478
    • Lu, Y.1    Sundararajan, N.2    Saratchandran, P.3
  • 33
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • Nov.
    • V. Kadirkamanathan andM. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Comput., vol.5, no.6, pp. 954-975, Nov. 1993.
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 34
    • 0031988675 scopus 로고    scopus 로고
    • Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter
    • L. Wang and J. Yen, "Extracting fuzzy rules for system modeling using a hybrid of genetic algorithm and Kalman filter," Fuzzy Sets Syst., vol.101, pp. 353-362, 1999.
    • (1999) Fuzzy Sets Syst. , vol.101 , pp. 353-362
    • Wang, L.1    Yen, J.2
  • 35
    • 0000773486 scopus 로고
    • A growing neural gas network learns topologies
    • B. Fritze, "A growing neural gas network learns topologies," Adv. Neural Inf. Process. Syst., vol.7, pp. 1-8, 1995.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 1-8
    • Fritze, B.1
  • 36
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol.3, pp. 213-225, 1991.
    • (1991) Neural Comput. , vol.3 , pp. 213-225
    • Platt, J.1
  • 37
    • 77955481654 scopus 로고    scopus 로고
    • Evolving self-organizing maps for online learning, data analysis and modeling
    • presented at the, New York
    • D. Deng and N. Kasabov, "Evolving self-organizing maps for online learning, data analysis and modeling," presented at the Int. Joint Conf. Neural Netw., New York, 2000.
    • (2000) Int. Joint Conf. Neural Netw.
    • Deng, D.1    Kasabov, N.2
  • 38
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks-Algorithms, applications and biological motivation
    • T. Yamakawa and G. Matsumoto, Eds. Singapore: World Scientific
    • N. Kasabov, "Evolving fuzzy neural networks-Algorithms, applications and biological motivation," in Methodologies for Conception Design and Application of Soft Computing, T. Yamakawa and G. Matsumoto, Eds. Singapore: World Scientific, 1998, pp. 217-274.
    • (1998) Methodologies for Conception Design and Application of Soft Computing , pp. 217-274
    • Kasabov, N.1
  • 39
    • 33947311376 scopus 로고    scopus 로고
    • Inferring operating rules for reservoir operations using fuzzy regression and ANFIS
    • S. J. Mousavi, K. Ponnambalam, and F. Karray, "Inferring operating rules for reservoir operations using fuzzy regression and ANFIS," Fuzzy Sets Syst., vol.158, pp. 1064-11062, 2007.
    • (2007) Fuzzy Sets Syst. , vol.158 , pp. 1064-11062
    • Mousavi, S.J.1    Ponnambalam, K.2    Karray, F.3
  • 40
    • 33947267506 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images
    • H. Qin and S. X. Yang, "Adaptive neuro-fuzzy inference systems based approach to nonlinear noise cancellation for images," Fuzzy Sets Syst., vol.158, pp. 1036-1063, 2007.
    • (2007) Fuzzy Sets Syst. , vol.158 , pp. 1036-1063
    • Qin, H.1    Yang, S.X.2
  • 41
    • 33747605322 scopus 로고    scopus 로고
    • Adaptive fuzzy-neural-network control DSPbased permanent magnet linear synchronous motor servo drive
    • Aug.
    • F.-J. Lin and P.-H. Shen, "Adaptive fuzzy-neural-network control DSPbased permanent magnet linear synchronous motor servo drive," IEEE Trans. Fuzzy Syst., vol.14, no.4, pp. 481-495, Aug. 2006.
    • (2006) IEEE Trans. Fuzzy Syst. , vol.14 , Issue.4 , pp. 481-495
    • Lin, F.-J.1    Shen, P.-H.2
  • 42
    • 0027702852 scopus 로고
    • Efficient fuzzy partition of pattern space for classification problems
    • H. Ishibuchi, K. Nozaki, and H. Tanaka, "Efficient fuzzy partition of pattern space for classification problems," Fuzzy Sets Syst., vol.59, pp. 295- 304, 1993.
    • (1993) Fuzzy Sets Syst. , vol.59 , pp. 295-304
    • Ishibuchi, H.1    Nozaki, K.2    Tanaka, H.3
  • 43
    • 0029244502 scopus 로고
    • Optimal fuzzy rules cover extrema
    • B.Kosko, "Optimal fuzzy rules cover extrema," Int. J. Intell. Syst., vol.10, no.2, pp. 249-255, 1995.
    • (1995) Int. J. Intell. Syst. , vol.10 , Issue.2 , pp. 249-255
    • Kosko, B.1
  • 44
    • 55249093161 scopus 로고    scopus 로고
    • An incremental construction learning algorithm for identification of TS Fuzzy Systems
    • Hong Kong
    • D. Wang, X.-J. Zeng, and J. A. Keane, "An incremental construction learning algorithm for identification of TS Fuzzy Systems," in Proc. IEEE Int. Conf. Fuzzy Syst., Hong Kong, 2008, pp. 1660-1666.
    • (2008) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 1660-1666
    • Wang, D.1    Zeng, X.-J.2    Keane, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.