메뉴 건너뛰기




Volumn 42, Issue 6, 2002, Pages 797-823

A method for fuzzy system identification based on clustering analysis

Author keywords

Cluster analysis; Fuzzy identification; Parameter identification; Structure identification

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; FUNCTIONS; FUZZY SETS; ITERATIVE METHODS; PARAMETER ESTIMATION;

EID: 33746326478     PISSN: 02329298     EISSN: 10294902     Source Type: Journal    
DOI: 10.1080/716067188     Document Type: Article
Times cited : (3)

References (33)
  • 2
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems
    • L.A. Zadeh (1973). Outline of a new approach to the analysis of complex systems. IEEE Trans. Syst. Man and Cyber., SMC-3, 1, 28-44.
    • (1973) IEEE Trans. Syst. Man and Cyber. , vol.SMC-3 , Issue.1 , pp. 28-44
    • Zadeh, L.A.1
  • 3
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • M. Sugeno and T. Yasukawa (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Trans. Fuz. Syst., 1(1), 7-31.
    • (1993) IEEE Trans. Fuz. Syst. , vol.1 , Issue.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 4
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data
    • L.X. Wang and J.M. Mendel (1992). Generating fuzzy rules from numerical data. IEEE Trans. Syst. Man and Cyber., 22(6), 1414-1427.
    • (1992) IEEE Trans. Syst. Man and Cyber. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 6
    • 0003057291 scopus 로고    scopus 로고
    • A self-generating method for fuzzy system design
    • C.C. Wong and S.M. Her (1999). A self-generating method for fuzzy system design. Fuzzy Sets and Systems, 103, 13-25.
    • (1999) Fuzzy Sets and Systems , vol.103 , pp. 13-25
    • Wong, C.C.1    Her, S.M.2
  • 7
    • 0000864293 scopus 로고    scopus 로고
    • A simple but powerful heuristic method for generating fuzzy rules from numerical data
    • K. Nozaki, H. Ischibuchi and H. Tanaka (1997). A simple but powerful heuristic method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems, 86, 251-270.
    • (1997) Fuzzy Sets and Systems , vol.86 , pp. 251-270
    • Nozaki, K.1    Ischibuchi, H.2    Tanaka, H.3
  • 10
    • 0031140178 scopus 로고    scopus 로고
    • Rule-based modeling of nonlinear relationships
    • W. Pedrycz and M. Reformat (1997). Rule-based modeling of nonlinear relationships. IEEE Trans. Fuz. Syst., 5(2), 256-269.
    • (1997) IEEE Trans. Fuz. Syst. , vol.5 , Issue.2 , pp. 256-269
    • Pedrycz, W.1    Reformat, M.2
  • 11
    • 0002298025 scopus 로고
    • The construction and evaluation of fuzzy models
    • Gupta (Ed.), North-Holland, NY
    • R.M. Tong (1979). The construction and evaluation of fuzzy models. In: Gupta (Ed.), pp. 559-576. Advances in Fuzzy Set Theory and Applications, North-Holland, NY.
    • (1979) Advances in Fuzzy Set Theory and Applications , pp. 559-576
    • Tong, R.M.1
  • 12
    • 21644475135 scopus 로고    scopus 로고
    • Identification algorithms for fuzzy relational matrices, Part 1 : Non-optimizing algorithms
    • M.M. Bourke and D.G. Fisher (2000). Identification algorithms for fuzzy relational matrices, Part 1 : non-optimizing algorithms. Fuzzy Sets and Systems, 109, 305-320.
    • (2000) Fuzzy Sets and Systems , vol.109 , pp. 305-320
    • Bourke, M.M.1    Fisher, D.G.2
  • 13
    • 21644444813 scopus 로고    scopus 로고
    • Identification algorithms for fuzzy relational matrices, Part 2: Optimizing algorithms
    • M.M. Bourke and D.G. Fisher (2000). Identification algorithms for fuzzy relational matrices, Part 2: optimizing algorithms. Fuzzy Sets and Systems, 109, 321-341.
    • (2000) Fuzzy Sets and Systems , vol.109 , pp. 321-341
    • Bourke, M.M.1    Fisher, D.G.2
  • 14
    • 0023209327 scopus 로고
    • Fuzzy model identification and self-learning for dynamic systems
    • C.W. Xu and Y.Z. Lu (1987). Fuzzy model identification and self-learning for dynamic systems. IEEE Trans. Syst. Man and Cyber. 17(4), 683-689.
    • (1987) IEEE Trans. Syst. Man and Cyber. , vol.17 , Issue.4 , pp. 683-689
    • Xu, C.W.1    Lu, Y.Z.2
  • 15
    • 0030128439 scopus 로고    scopus 로고
    • Adaptive fuzzy modeling of nonlinear dynamical systems
    • S. Tan and Y. Yu (1996). Adaptive fuzzy modeling of nonlinear dynamical systems. Automatica, 32(4), 637-643.
    • (1996) Automatica , vol.32 , Issue.4 , pp. 637-643
    • Tan, S.1    Yu, Y.2
  • 17
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi and M. Sugeno (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man and Cyber. 15(1), 116-132.
    • (1985) IEEE Trans. Syst. Man and Cyber. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 18
    • 0022700023 scopus 로고
    • Fuzzy modeling and control of multilayer incinerator
    • M. Sugeno and G.T. Kang (1986). Fuzzy modeling and control of multilayer incinerator. Fuzzy Sets and Systems, 18, 329-346.
    • (1986) Fuzzy Sets and Systems , vol.18 , pp. 329-346
    • Sugeno, M.1    Kang, G.T.2
  • 19
    • 0000212165 scopus 로고    scopus 로고
    • About the use of fuzzy clustering techniques for fuzzy model identification
    • A.F. Gomez-Skarmeta, M. Delgado and M.A. Vila (1999). About the use of fuzzy clustering techniques for fuzzy model identification. Fuzzy Sets and Systems, 106, 179-188.
    • (1999) Fuzzy Sets and Systems , vol.106 , pp. 179-188
    • Gomez-Skarmeta, A.F.1    Delgado, M.2    Vila, M.A.3
  • 20
    • 0000636549 scopus 로고    scopus 로고
    • A clustering algorithm for fuzzy model identification
    • Chen, J.-Q., Xi, Y.-G. and Z.-J. Zhang (1998). A clustering algorithm for fuzzy model identification. Fuzzy Sets and Systems, 98, 319-329.
    • (1998) Fuzzy Sets and Systems , vol.98 , pp. 319-329
    • Chen, J.-Q.1    Xi, Y.-G.2    Zhang, Z.-J.3
  • 21
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • N.R. Pal and J.C. Bezdek (1995). On cluster validity for the fuzzy c-means model. IEEE Trans. Fuz. Syst., 3(3), 370-379.
    • (1995) IEEE Trans. Fuz. Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 22
    • 0030215076 scopus 로고    scopus 로고
    • Fuzzy function approximation with ellipsoidal rules
    • J.A. Dickerson and B. Kosko (1996). Fuzzy function approximation with ellipsoidal rules. IEEE Trans. Syst. Man and Cyber., 26(4), 542-560.
    • (1996) IEEE Trans. Syst. Man and Cyber. , vol.26 , Issue.4 , pp. 542-560
    • Dickerson, J.A.1    Kosko, B.2
  • 23
    • 0030837203 scopus 로고    scopus 로고
    • Constructing a fuzzy controller from data
    • F. Klawonn and R. Kruse (1997). Constructing a fuzzy controller from data. Fuzzy Sets and Systems, 85, 177-193.
    • (1997) Fuzzy Sets and Systems , vol.85 , pp. 177-193
    • Klawonn, F.1    Kruse, R.2
  • 24
    • 0000469445 scopus 로고    scopus 로고
    • Identification of functional fuzzy models using multidimensional reference fuzzy sets
    • A. Kroll (1996). Identification of functional fuzzy models using multidimensional reference fuzzy sets. Fuzzy Sets and Systems, 80, 149-158.
    • (1996) Fuzzy Sets and Systems , vol.80 , pp. 149-158
    • Kroll, A.1
  • 25
    • 0030173350 scopus 로고    scopus 로고
    • Directional fuzzy clustering and its application to fuzzy modeling
    • K. Hirota and W. Pedrycz (1996). Directional fuzzy clustering and its application to fuzzy modeling. Fuzzy Sets and Systems, 80, 315-326.
    • (1996) Fuzzy Sets and Systems , vol.80 , pp. 315-326
    • Hirota, K.1    Pedrycz, W.2
  • 26
    • 0028485818 scopus 로고
    • Identification of fuzzy prediction models through hyper-ellipsoidal clustering
    • Y. Nakamori and M. Ryoke (1994). Identification of fuzzy prediction models through hyper-ellipsoidal clustering. IEEE Trans. Syst. Man and Cyber, 24(8), 1153-1173.
    • (1994) IEEE Trans. Syst. Man and Cyber , vol.24 , Issue.8 , pp. 1153-1173
    • Nakamori, Y.1    Ryoke, M.2
  • 27
    • 0000740380 scopus 로고
    • Fast self-learning multivariable controllers constructed from a modified CPN network
    • J. Nie and D.A. Linkens (1994). Fast self-learning multivariable controllers constructed from a modified CPN network. Int. J. Control, 60(3), 369-393.
    • (1994) Int. J. Control , vol.60 , Issue.3 , pp. 369-393
    • Nie, J.1    Linkens, D.A.2
  • 28
    • 0031139892 scopus 로고    scopus 로고
    • Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme
    • J. Nie (1997). Fuzzy control of multivariable nonlinear servomechanisms with explicit decoupling scheme. IEEE Trans. Fuz. Syst., 5(2), 306-311.
    • (1997) IEEE Trans. Fuz. Syst. , vol.5 , Issue.2 , pp. 306-311
    • Nie, J.1
  • 29
    • 33746331140 scopus 로고    scopus 로고
    • Fuzzy logic control of a continuous fermentor reactor using input-output linearization
    • G.E. Tsekouras, A.V. Taprantzis and G.V. Bafas (1999). Fuzzy logic control of a continuous fermentor reactor using input-output linearization. SAMS, 35(3), 239-255.
    • (1999) SAMS , vol.35 , Issue.3 , pp. 239-255
    • Tsekouras, G.E.1    Taprantzis, A.V.2    Bafas, G.V.3
  • 31
    • 0026925677 scopus 로고
    • Self-learning fuzzy controllers based on temporal back propagation
    • J.-S.R. Jang (1992). Self-learning fuzzy controllers based on temporal back propagation. IEEE Trans. Neutral Net., 3(5), 714-723.
    • (1992) IEEE Trans. Neutral Net. , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.-S.R.1
  • 32
    • 0028370964 scopus 로고
    • Rule-based structure identification in an adaptive network-based fuzzy inference system
    • C.T. Sun (1994). Rule-based structure identification in an adaptive network-based fuzzy inference system. IEEE Trans. Fuz. Syst., 2(1), 64-73.
    • (1994) IEEE Trans. Fuz. Syst. , vol.2 , Issue.1 , pp. 64-73
    • Sun, C.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.