메뉴 건너뛰기




Volumn 72, Issue 1-3, 2008, Pages 420-435

A granular-oriented development of functional radial basis function neural networks

Author keywords

Context based fuzzy clustering; Functional neuron; Fuzzy clustering; Information granules; Local models; Receptive fields

Indexed keywords

ADAPTIVE FILTERING; ATTITUDE CONTROL; ELECTRIC NETWORK PARAMETERS; FEEDFORWARD NEURAL NETWORKS; FLOW OF SOLIDS; FUZZY CLUSTERING; FUZZY SETS; FUZZY SYSTEMS; GRANULATION; IMAGE SEGMENTATION; KETONES; LEARNING SYSTEMS; NEURAL NETWORKS; PLANNING; PROBABILITY DENSITY FUNCTION; STRATEGIC PLANNING;

EID: 55949110248     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2007.12.016     Document Type: Article
Times cited : (54)

References (27)
  • 2
  • 4
    • 0035137045 scopus 로고    scopus 로고
    • Numerical solution of differential equations using multiquadric radial basis function networks
    • Duy N.M., and Cong T.T. Numerical solution of differential equations using multiquadric radial basis function networks. Neural Netw. 14 (2001) 185-199
    • (2001) Neural Netw. , vol.14 , pp. 185-199
    • Duy, N.M.1    Cong, T.T.2
  • 5
    • 12144280367 scopus 로고    scopus 로고
    • On the power of Boolean computations in generalized RBF neural networks
    • Friedrichs F., and Schmitt M. On the power of Boolean computations in generalized RBF neural networks. Neurocomputing 63 (2005) 483-498
    • (2005) Neurocomputing , vol.63 , pp. 483-498
    • Friedrichs, F.1    Schmitt, M.2
  • 6
    • 0037983742 scopus 로고    scopus 로고
    • Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance
    • Fu X., and Wang L. Data dimensionality reduction with application to simplifying RBF network structure and improving classification performance. IEEE Trans. Syst. Man Cybern. Part B 33 3 (2003) 399-409
    • (2003) IEEE Trans. Syst. Man Cybern. Part B , vol.33 , Issue.3 , pp. 399-409
    • Fu, X.1    Wang, L.2
  • 7
    • 4544285805 scopus 로고    scopus 로고
    • Efficient clustering of radial basis perceptron neural network for pattern recognition
    • Han M., and Xi J. Efficient clustering of radial basis perceptron neural network for pattern recognition. Pattern Recognit. 37 (2004) 2059-2067
    • (2004) Pattern Recognit. , vol.37 , pp. 2059-2067
    • Han, M.1    Xi, J.2
  • 8
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: a comparative study
    • Harpham C., and Dawson C.W. The effect of different basis functions on a radial basis function network for time series prediction: a comparative study. Neurocomputing 69 (2006) 2161-2170
    • (2006) Neurocomputing , vol.69 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.W.2
  • 9
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • Karayiannis N.B. Reformulated radial basis neural networks trained by gradient descent. IEEE Trans. Neural Netw. 10 3 (1999) 657-671
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 10
    • 0036857911 scopus 로고    scopus 로고
    • An ART-based construction of RBF networks
    • Lee S.J., and Hou C.L. An ART-based construction of RBF networks. IEEE Trans. Neural Netw. 13 6 (2002) 1308-1321
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.6 , pp. 1308-1321
    • Lee, S.J.1    Hou, C.L.2
  • 12
    • 0035100447 scopus 로고    scopus 로고
    • Improving neural network training solutions using regularization
    • Loone S.M., and Irwin G. Improving neural network training solutions using regularization. Neurocomputing 37 (2001) 71-90
    • (2001) Neurocomputing , vol.37 , pp. 71-90
    • Loone, S.M.1    Irwin, G.2
  • 13
    • 17644375158 scopus 로고    scopus 로고
    • Symbolic classification, clustering and fuzzy radial basis function network
    • Mali K., and Mitra S. Symbolic classification, clustering and fuzzy radial basis function network. Fuzzy Sets Syst. 152 (2005) 553-564
    • (2005) Fuzzy Sets Syst. , vol.152 , pp. 553-564
    • Mali, K.1    Mitra, S.2
  • 14
    • 0035568382 scopus 로고    scopus 로고
    • FRBF: a fuzzy radial basis function network
    • Mitra S., and Basak J. FRBF: a fuzzy radial basis function network. Neural Comput. Appl. 10 (2001) 244-252
    • (2001) Neural Comput. Appl. , vol.10 , pp. 244-252
    • Mitra, S.1    Basak, J.2
  • 15
    • 0000672424 scopus 로고
    • Fast learning in networks of locally tuned processing units
    • Moody J., and Darken C.J. Fast learning in networks of locally tuned processing units. Neural Comput. 1 (1989) 281-294
    • (1989) Neural Comput. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 16
    • 0030142628 scopus 로고    scopus 로고
    • Conditional fuzzy c-means
    • Pedrycz W. Conditional fuzzy c-means. Pattern Recognit. Lett. 17 (1996) 625-631
    • (1996) Pattern Recognit. Lett. , vol.17 , pp. 625-631
    • Pedrycz, W.1
  • 17
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • Pedrycz W. Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Trans. Neural Netw. 9 4 (1998) 601-612
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 20
    • 0035307307 scopus 로고    scopus 로고
    • Time-series forecasting using GA-tuned radial basis functions
    • Sheta A.F., and Jong K.D. Time-series forecasting using GA-tuned radial basis functions. Inf. Sci. 133 (2001) 221-228
    • (2001) Inf. Sci. , vol.133 , pp. 221-228
    • Sheta, A.F.1    Jong, K.D.2
  • 21
    • 24344455644 scopus 로고    scopus 로고
    • Sensitivity analysis applied to the construction of radial basis function networks
    • Shi D., Yeung D.S., and Gao J. Sensitivity analysis applied to the construction of radial basis function networks. Neural Netw. 18 (2005) 951-957
    • (2005) Neural Netw. , vol.18 , pp. 951-957
    • Shi, D.1    Yeung, D.S.2    Gao, J.3
  • 22
    • 33745203522 scopus 로고    scopus 로고
    • Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering
    • Staiano A., Tagliaferri R., and Pedrycz W. Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering. Neurocomputing 69 (2006) 1570-1581
    • (2006) Neurocomputing , vol.69 , pp. 1570-1581
    • Staiano, A.1    Tagliaferri, R.2    Pedrycz, W.3
  • 23
    • 0035112152 scopus 로고    scopus 로고
    • Nonlinear blind source separation using a radial basis function network
    • Tan Y., Wang J., and Zurada J.M. Nonlinear blind source separation using a radial basis function network. IEEE Trans. Neural Netw. 12 1 (2001) 124-134
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.1 , pp. 124-134
    • Tan, Y.1    Wang, J.2    Zurada, J.M.3
  • 24
    • 17044405097 scopus 로고    scopus 로고
    • Fast recognition of musical genres using RBF networks
    • Turnbull D., and Elkan C. Fast recognition of musical genres using RBF networks. IEEE Trans. Knowledge Data Eng. 17 4 (2005) 580-584
    • (2005) IEEE Trans. Knowledge Data Eng. , vol.17 , Issue.4 , pp. 580-584
    • Turnbull, D.1    Elkan, C.2
  • 25
    • 10244277975 scopus 로고    scopus 로고
    • Hyper RBF model for accurate reaching in redundant robotic systems
    • Vilaplana J.M., Molina J.L.P., and Coronado J.L. Hyper RBF model for accurate reaching in redundant robotic systems. Neurocomputing 61 (2004) 495-501
    • (2004) Neurocomputing , vol.61 , pp. 495-501
    • Vilaplana, J.M.1    Molina, J.L.P.2    Coronado, J.L.3
  • 26
    • 15944427765 scopus 로고    scopus 로고
    • Intelligent initialization of resource allocating RBF networks
    • Wallace M., Tsapatsoulis N., and Kollias S. Intelligent initialization of resource allocating RBF networks. Neural Netw. 18 (2005) 117-122
    • (2005) Neural Netw. , vol.18 , pp. 117-122
    • Wallace, M.1    Tsapatsoulis, N.2    Kollias, S.3
  • 27
    • 1342286914 scopus 로고    scopus 로고
    • Induction machine fault detection using SOM-based RBF neural networks
    • Wu S., and Chow T.W.S. Induction machine fault detection using SOM-based RBF neural networks. IEEE Trans. Ind. Electron. 51 1 (2004) 183-194
    • (2004) IEEE Trans. Ind. Electron. , vol.51 , Issue.1 , pp. 183-194
    • Wu, S.1    Chow, T.W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.