메뉴 건너뛰기




Volumn 51, Issue 6, 2007, Pages 3244-3256

EM algorithms for nonlinear mixed effects models

Author keywords

EM; Gauss Hermite quadrature; Importance sampling; Laplace; Linearization; Markov chain; Monte Carlo; Nonlinear mixed effects model

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; COMPUTER SIMULATION; LAPLACE TRANSFORMS; LINEARIZATION; MARKOV PROCESSES; MAXIMUM LIKELIHOOD ESTIMATION; MONTE CARLO METHODS; PARAMETER ESTIMATION;

EID: 33846594422     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.11.022     Document Type: Article
Times cited : (11)

References (18)
  • 2
    • 33846646911 scopus 로고    scopus 로고
    • Beal, S.L., et al., 1992. NONMEM User's Guide. University of California, San Francisco, NONMEM Project Group.
  • 3
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth G.J., and Hobert P.J. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. Roy. Statist. Soc. B 61 (1999) 265-285
    • (1999) J. Roy. Statist. Soc. B , vol.61 , pp. 265-285
    • Booth, G.J.1    Hobert, P.J.2
  • 7
    • 19044400906 scopus 로고    scopus 로고
    • Maximum likelihood estimation in nonlinear mixed effects models
    • Kuhn E., and Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statist. Data Anal. 49 (2005) 1020-1038
    • (2005) Comput. Statist. Data Anal. , vol.49 , pp. 1020-1038
    • Kuhn, E.1    Lavielle, M.2
  • 8
    • 33846580451 scopus 로고    scopus 로고
    • A hybrid estimator in nonlinear and generalized linear mixed effects models
    • Lai T.L., and Shih M.C. A hybrid estimator in nonlinear and generalized linear mixed effects models. Biometrika 90 (2006) 791-795
    • (2006) Biometrika , vol.90 , pp. 791-795
    • Lai, T.L.1    Shih, M.C.2
  • 9
    • 0035628553 scopus 로고    scopus 로고
    • Implementations of the Monte Carlo EM algorithm
    • Levine R., and Casella G. Implementations of the Monte Carlo EM algorithm. J. Comput. Graph. Statist. 10 (2001) 422-439
    • (2001) J. Comput. Graph. Statist. , vol.10 , pp. 422-439
    • Levine, R.1    Casella, G.2
  • 10
    • 0025170004 scopus 로고
    • Nonlinear mixed effects models for repeated measures data
    • Lindstrom M., and Bates D. Nonlinear mixed effects models for repeated measures data. Biometrics 44 (1990) 673-687
    • (1990) Biometrics , vol.44 , pp. 673-687
    • Lindstrom, M.1    Bates, D.2
  • 11
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis T.A. Finding the observed information matrix when using the EM algorithm. J. Roy. Statist. Soc. B 44 (1982) 226-233
    • (1982) J. Roy. Statist. Soc. B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 12
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch C.E. Maximum likelihood algorithms for generalized linear mixed models. J. Amer. Statist. Assoc. 92 (1997) 162-170
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 13
    • 84946045727 scopus 로고
    • Approximations to the log-likelihood function in the nonlinear mixed-effects model
    • Pinheiro J.C., and Bates D.M. Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Statist. 4 (1995) 12-35
    • (1995) J. Comput. Graph. Statist. , vol.4 , pp. 12-35
    • Pinheiro, J.C.1    Bates, D.M.2
  • 14
    • 0019289897 scopus 로고
    • Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data
    • Sheiner L.B., and Beal S.L. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J. Pharm. Biopharm. 8 (1980) 553-571
    • (1980) J. Pharm. Biopharm. , vol.8 , pp. 553-571
    • Sheiner, L.B.1    Beal, S.L.2
  • 15
    • 0000474486 scopus 로고    scopus 로고
    • A note on Laplacians approximation in nonlinear mixed effects models
    • Vonesh E.F. A note on Laplacians approximation in nonlinear mixed effects models. Biometrika 83 (1996) 447-452
    • (1996) Biometrika , vol.83 , pp. 447-452
    • Vonesh, E.F.1
  • 16
    • 0029816547 scopus 로고    scopus 로고
    • An EM algorithm for nonlinear random effects models
    • Walker S. An EM algorithm for nonlinear random effects models. Biometrics 52 (1996) 934-944
    • (1996) Biometrics , vol.52 , pp. 934-944
    • Walker, S.1
  • 17
    • 0000242257 scopus 로고
    • Calculating the content and the boundary of the highest posterior density region via data augmentation
    • Wei G.C.G., and Tanner M.A. Calculating the content and the boundary of the highest posterior density region via data augmentation. Biometrika 77 (1990) 649-652
    • (1990) Biometrika , vol.77 , pp. 649-652
    • Wei, G.C.G.1    Tanner, M.A.2
  • 18
    • 0001684437 scopus 로고
    • Laplacian's approximation for nonlinear mixed models
    • Wolfinger R.D. Laplacian's approximation for nonlinear mixed models. Biometrika 80 (1993) 791-795
    • (1993) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.