메뉴 건너뛰기




Volumn 108, Issue 46, 2011, Pages 18690-18695

Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process

Author keywords

Binding kinetics; Membrane receptor; Protein conformational change

Indexed keywords

G PROTEIN COUPLED RECEPTOR; HELIX 7 PROTEIN; HELIX 8 PROTEIN; PROTEIN; RETINA S ANTIGEN; RHODOPSIN; UNCLASSIFIED DRUG;

EID: 81755187017     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1015461108     Document Type: Article
Times cited : (78)

References (49)
  • 2
    • 0028924953 scopus 로고
    • Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors
    • Gurevich VV, et al. (1995) Arrestin interactions with G protein-coupled receptors. Direct binding studies of wild type and mutant arrestins with rhodopsin, beta 2-adrenergic, and m2 muscarinic cholinergic receptors. J Biol Chem 270:720-731.
    • (1995) J Biol Chem , vol.270 , pp. 720-731
    • Gurevich, V.V.1
  • 4
    • 17644402459 scopus 로고    scopus 로고
    • Transduction of receptor signals by beta-arrestins
    • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512-517.
    • (2005) Science , vol.308 , pp. 512-517
    • Lefkowitz, R.J.1    Shenoy, S.K.2
  • 5
    • 0036532207 scopus 로고    scopus 로고
    • Structure of rhodopsin and the superfamily of seven-helical receptors: The same and not the same
    • Sakmar TP (2002) Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same. Curr Opin Cell Biol 14:189-195.
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 189-195
    • Sakmar, T.P.1
  • 6
    • 0033638108 scopus 로고    scopus 로고
    • Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites
    • Mendez A, et al. (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153-164.
    • (2000) Neuron , vol.28 , pp. 153-164
    • Mendez, A.1
  • 7
    • 0021748638 scopus 로고
    • Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin
    • DOI 10.1016/0014-5793(84)81221-1
    • Kuhn H, Hall SW, Wilden U (1984) Light-induced binding of 48-kDa protein to photoreceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473-478. (Pubitemid 15208287)
    • (1984) FEBS Letters , vol.176 , Issue.2 , pp. 473-478
    • Kuhn, H.1    Hall, S.W.2    Wilden, U.3
  • 8
    • 0019956634 scopus 로고
    • Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites
    • DOI 10.1021/bi00541a032
    • Wilden U, Kuhn H (1982) Light-dependent phosphorylation of rhodopsin: number of phosphorylation sites. Biochemistry 21:3014-3022. (Pubitemid 12067517)
    • (1982) Biochemistry , vol.21 , Issue.12 , pp. 3014-3022
    • Wilden, U.1    Kuehn, H.2
  • 9
    • 0027241013 scopus 로고
    • Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin
    • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268:11628-11638. (Pubitemid 23168111)
    • (1993) Journal of Biological Chemistry , vol.268 , Issue.16 , pp. 11628-11638
    • Gurevich, V.V.1    Benovic, J.L.2
  • 10
    • 33646414189 scopus 로고    scopus 로고
    • The structural basis of arrestin-mediated regulation of G-protein-coupled receptors
    • Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465-502.
    • (2006) Pharmacol Ther , vol.110 , pp. 465-502
    • Gurevich, V.V.1    Gurevich, E.V.2
  • 11
    • 0032568021 scopus 로고    scopus 로고
    • X-ray crystal structure of arrestin from bovine rod outer segments
    • DOI 10.1038/36147
    • Granzin J, et al. (1998) X-ray crystal structure of arrestin from bovine rod outer segments. Nature 391:918-921. (Pubitemid 28157673)
    • (1998) Nature , vol.391 , Issue.6670 , pp. 918-921
    • Granzin, J.1    Wilden, U.2    Choe, H.-W.3    Labahn, J.4    Krafft, B.5    Buldt, G.6
  • 12
    • 0028924619 scopus 로고
    • Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin
    • Gurevich VV, Benovic JL (1995) Visual arrestin binding to rhodopsin. Diverse functional roles of positively charged residues within the phosphorylation-recognition region of arrestin. J Biol Chem 270:6010-6016.
    • (1995) J Biol Chem , vol.270 , pp. 6010-6016
    • Gurevich, V.V.1    Benovic, J.L.2
  • 13
    • 0033574274 scopus 로고    scopus 로고
    • The 2.8 A crystal structure of visual arrestin: A model for arrestin's regulation
    • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Cell 97:257-269.
    • (1999) Cell , vol.97 , pp. 257-269
    • Hirsch, J.A.1    Schubert, C.2    Gurevich, V.V.3    Sigler, P.B.4
  • 14
    • 0024582884 scopus 로고
    • Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II
    • DOI 10.1021/bi00430a052
    • Schleicher A, Kuhn H, Hofmann KP (1989) Kinetics, binding constant, and activation energy of the 48-kDa protein-rhodopsin complex by extra-metarhodopsin II. Biochemistry 28:1770-1775. (Pubitemid 19072052)
    • (1989) Biochemistry , vol.28 , Issue.4 , pp. 1770-1775
    • Schleicher, A.1    Kuhn, H.2    Hofmann, K.P.3
  • 16
    • 33846289948 scopus 로고    scopus 로고
    • Arrestin residues involved in the functional binding of arrestin phosphorylated, photolyzed rhodopsin
    • Ascano MT, Smith WC, Gregurick SK, Robinson PR (2006) Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin. Mol Vis 12:1516-1525. (Pubitemid 46117009)
    • (2006) Molecular Vision , vol.12 , pp. 1516-1525
    • Ascano, M.T.1    Smith, W.C.2    Gregurick, S.K.3    Robinson, P.R.4
  • 17
    • 0033514978 scopus 로고    scopus 로고
    • Identification of regions of arrestin that bind to rhodopsin
    • Smith WC, et al. (1999) Identification of regions of arrestin that bind to rhodopsin. Biochemistry 38:2752-2761.
    • (1999) Biochemistry , vol.38 , pp. 2752-2761
    • Smith, W.C.1
  • 18
    • 0347723912 scopus 로고    scopus 로고
    • Mapping the arrestin-receptor interface: Structural elements responsible for receptor specificity of arrestin proteins
    • DOI 10.1074/jbc.M308834200
    • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestinreceptor interface. Structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262-1268. (Pubitemid 38082650)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.2 , pp. 1262-1268
    • Vishnivetskiy, S.A.1    Hosey, M.M.2    Benovic, J.L.3    Gurevich, V.V.4
  • 19
    • 33645506641 scopus 로고    scopus 로고
    • Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin
    • Hanson SM, et al. (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900-4905.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 4900-4905
    • Hanson, S.M.1
  • 21
    • 39749105934 scopus 로고    scopus 로고
    • In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: Impact of single point mutations related to retina degenerative diseases
    • DOI 10.1002/prot.21873
    • Mokarzel-Falcon L, Padron-Garcia JA, Carrasco-Velar R, Berry C, Montero-Cabrera LA (2008) In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases. Proteins 70:1133-1141. (Pubitemid 351304072)
    • (2008) Proteins: Structure, Function and Genetics , vol.70 , Issue.4 , pp. 1133-1141
    • Mokarzel-Falcon, L.1    Padron-Garcia, J.A.2    Carrasco-Velar, R.3    Berry, C.4    Montero-Cabrera, L.A.5
  • 23
    • 34548490297 scopus 로고    scopus 로고
    • Dynamics of arrestin-rhodopsin interactions: Loop movement is involved in arrestin activation and receptor binding
    • DOI 10.1074/jbc.M702155200
    • Sommer ME, Farrens DL, McDowell JH,Weber LA, Smith WC (2007) Dynamics of arrestin- rhodopsin interactions: loop movement is involved in arrestin activation and receptor binding. J Biol Chem 282:25560-25568. (Pubitemid 47372841)
    • (2007) Journal of Biological Chemistry , vol.282 , Issue.35 , pp. 25560-25568
    • Sommer, M.E.1    Farrens, D.L.2    McDowell, J.H.3    Weber, L.A.4    Smith, W.C.5
  • 24
    • 0034528629 scopus 로고    scopus 로고
    • Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin
    • DOI 10.1074/jbc.M006776200
    • Pulvermuller A, Schroder K, Fischer T, Hofmann KP (2000) Interactions of metarhodopsin II. Arrestin peptides compete with arrestin and transducin. J Biol Chem 275:37679-37685. (Pubitemid 32004881)
    • (2000) Journal of Biological Chemistry , vol.275 , Issue.48 , pp. 37679-37685
    • Pulvermuller, A.1    Schroder, K.2    Fischer, T.3    Hofmann, K.P.4
  • 25
    • 0037340792 scopus 로고    scopus 로고
    • The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding
    • DOI 10.1046/j.1471-4159.2003.01598.x
    • Raman D, Osawa S, Gurevich VV, Weiss ER (2003) The interaction with the cytoplasmic loops of rhodopsin plays a crucial role in arrestin activation and binding. J Neurochem 84:1040-1050. (Pubitemid 36330657)
    • (2003) Journal of Neurochemistry , vol.84 , Issue.5 , pp. 1040-1050
    • Raman, D.1    Osawa, S.2    Gurevich, V.V.3    Weiss, E.R.4
  • 26
    • 0029907599 scopus 로고    scopus 로고
    • Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin
    • DOI 10.1126/science.274.5288.768
    • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768-770. (Pubitemid 26398253)
    • (1996) Science , vol.274 , Issue.5288 , pp. 768-770
    • Farrens, D.L.1    Altenbach, C.2    Yang, K.3    Hubbell, W.L.4    Khorana, H.G.5
  • 27
    • 0037285444 scopus 로고    scopus 로고
    • Rhodopsin structure, dynamics, and activation: A perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking
    • DOI 10.1016/S0065-3233(03)63010-X
    • Hubbell WL, Altenbach C, Hubbell CM, Khorana HG (2003) Rhodopsin structure, dynamics, and activation: a perspective from crystallography, site-directed spin labeling, sulfhydryl reactivity, and disulfide cross-linking. Adv Protein Chem 63:243-290. (Pubitemid 36268430)
    • (2003) Advances in Protein Chemistry , vol.63 , pp. 243-290
    • Hubbell, W.L.1    Altenbach, C.2    Hubbell, C.M.3    Khorana, H.G.4
  • 28
    • 60849087699 scopus 로고    scopus 로고
    • Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: Sequence of spectrally silent steps
    • Kim TY, MoellerM,Winkler K, Kirchberg K, Alexiev U (2009) Dissection of environmental changes at the cytoplasmic surface of light-activated bacteriorhodopsin and visual rhodopsin: sequence of spectrally silent steps. Photochem Photobiol 85:570-577.
    • (2009) Photochem Photobiol , vol.85 , pp. 570-577
    • Kim, T.Y.1    Moeller, M.2    Winkler, K.3    Kirchberg, K.4    Alexiev, U.5
  • 29
    • 33846631322 scopus 로고    scopus 로고
    • Linkage Between the Intramembrane H-bond Network Around Aspartic Acid 83 and the Cytosolic Environment of Helix 8 in Photoactivated Rhodopsin
    • DOI 10.1016/j.jmb.2006.11.098, PII S0022283606016603
    • Lehmann N, Alexiev U, Fahmy K (2007) Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin. J Mol Biol 366:1129-1141. (Pubitemid 46186390)
    • (2007) Journal of Molecular Biology , vol.366 , Issue.4 , pp. 1129-1141
    • Lehmann, N.1    Alexiev, U.2    Fahmy, K.3
  • 30
    • 76249091631 scopus 로고    scopus 로고
    • Functional interaction structures of the photochromic retinal protein rhodopsin
    • Kirchberg K, Kim TY, Haase S, Alexiev U (2010) Functional interaction structures of the photochromic retinal protein rhodopsin. Photochem Photobiol Sci 9:226-233.
    • (2010) Photochem Photobiol Sci , vol.9 , pp. 226-233
    • Kirchberg, K.1    Kim, T.Y.2    Haase, S.3    Alexiev, U.4
  • 31
    • 52949102889 scopus 로고    scopus 로고
    • Crystal structure of opsin in its G-protein-interacting conformation
    • Scheerer P, et al. (2008) Crystal structure of opsin in its G-protein-interacting conformation. Nature 455:497-502.
    • (2008) Nature , vol.455 , pp. 497-502
    • Scheerer, P.1
  • 32
    • 47049130668 scopus 로고    scopus 로고
    • Crystal structure of the ligand-free G-protein-coupled receptor opsin
    • DOI 10.1038/nature07063, PII NATURE07063
    • Park JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP (2008) Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454:183-187. (Pubitemid 351969893)
    • (2008) Nature , vol.454 , Issue.7201 , pp. 183-187
    • Park, J.H.1    Scheerer, P.2    Hofmann, K.P.3    Choe, H.-W.4    Ernst, O.P.5
  • 34
    • 0037008008 scopus 로고    scopus 로고
    • Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch
    • DOI 10.1021/bi025534m
    • Krishna AG, Menon ST, Terry TJ, Sakmar TP (2002) Evidence that helix 8 of rhodopsin acts as a membrane-dependent conformational switch. Biochemistry 41:8298-8309. (Pubitemid 34705483)
    • (2002) Biochemistry , vol.41 , Issue.26 , pp. 8298-8309
    • Krishna, A.G.1    Menon, S.T.2    Terry, T.J.3    Sakmar, T.P.4
  • 35
    • 0037414446 scopus 로고    scopus 로고
    • Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: A time-resolved fluorescence depolarization study
    • DOI 10.1016/S0022-2836(03)00326-7
    • Alexiev U, Rimke I, Pohlmann T (2003) Elucidation of the nature of the conformational changes of the EF-interhelical loop in bacteriorhodopsin and of the helix VIII on the cytoplasmic surface of bovine rhodopsin: a time-resolved fluorescence depolarization study. J Mol Biol 328:705-719. (Pubitemid 36438583)
    • (2003) Journal of Molecular Biology , vol.328 , Issue.3 , pp. 705-719
    • Alexiev, U.1    Rimke, I.2    Pohlmann, T.3
  • 36
    • 34247191984 scopus 로고    scopus 로고
    • Picosecond multidimensional fluorescence spectroscopy: A tool to measure real-time protein dynamics during function
    • DOI 10.1562/2006-06-21-RA-943
    • Kim TY, Winkler K, Alexiev U (2007) Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function. Photochem Photobiol 83:378-384. (Pubitemid 46623075)
    • (2007) Photochemistry and Photobiology , vol.83 , Issue.2 , pp. 378-384
    • Kim, T.-Y.1    Winkler, K.2    Alexiev, U.3
  • 37
    • 0842331059 scopus 로고    scopus 로고
    • The molecular acrobatics of arrestin activation
    • DOI 10.1016/j.tips.2003.12.008
    • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105-111. (Pubitemid 38183397)
    • (2004) Trends in Pharmacological Sciences , vol.25 , Issue.2 , pp. 105-111
    • Gurevich, V.V.1    Gurevich, E.V.2
  • 39
    • 81755166179 scopus 로고    scopus 로고
    • Activation and molecular recognition of the GPCR rhodopsin - Insights from time-resolved fluorescence depolarisation and single molecule experiments
    • doi: 10.1016/j.ejcb.2011.03.009
    • Kim TY, Schlieter T, Haase S, Alexiev U (2011) Activation and molecular recognition of the GPCR rhodopsin - Insights from time-resolved fluorescence depolarisation and single molecule experiments. Eur J Cell Biol, doi: 10.1016/j.ejcb.2011.03.009.
    • (2011) Eur J Cell Biol
    • Kim, T.Y.1    Schlieter, T.2    Haase, S.3    Alexiev, U.4
  • 40
    • 28444473536 scopus 로고    scopus 로고
    • Simulation of fluorescence anisotropy experiments: Probing protein dynamics
    • DOI 10.1529/biophysj.105.069500
    • Schroder GF, Alexiev U, Grubmuller H (2005) Simulation of fluorescence anisotropy experiments: probing protein dynamics. Biophys J 89:3757-3770. (Pubitemid 41725599)
    • (2005) Biophysical Journal , vol.89 , Issue.6 , pp. 3757-3770
    • Schroder, G.F.1    Alexiev, U.2    Grubmuller, H.3
  • 41
    • 0022351581 scopus 로고
    • Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II
    • DOI 10.1016/0005-2728(85)90143-4
    • Hofmann KP (1985) Effect of GTP on the rhodopsin-G-protein complex by transient formation of extra metarhodopsin II. Biochim Biophys Acta 810:278-281. (Pubitemid 16210021)
    • (1985) Biochimica et Biophysica Acta - Bioenergetics , vol.810 , Issue.2 , pp. 278-281
    • Hofmann, K.P.1
  • 42
    • 70450225035 scopus 로고    scopus 로고
    • The role of arrestin alpha-helix I in receptor binding
    • Vishnivetskiy SA, et al. (2010) The role of arrestin alpha-helix I in receptor binding. J Mol Biol 395:42-54.
    • (2010) J Mol Biol , vol.395 , pp. 42-54
    • Vishnivetskiy, S.A.1
  • 43
    • 62949153556 scopus 로고    scopus 로고
    • Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor
    • Huynh J, Thomas WG, Aguilar MI, Pattenden LK (2009) Role of helix 8 in G protein-coupled receptors based on structure-function studies on the type 1 angiotensin receptor. Mol Cell Endocrinol 302:118-127.
    • (2009) Mol Cell Endocrinol , vol.302 , pp. 118-127
    • Huynh, J.1    Thomas, W.G.2    Aguilar, M.I.3    Pattenden, L.K.4
  • 45
    • 0017807324 scopus 로고
    • The preparation of 11-cis-retinal
    • Knowles A, Priestley A (1978) The preparation of 11-cis-retinal. Vision Res 18:115-116.
    • (1978) Vision Res , vol.18 , pp. 115-116
    • Knowles, A.1    Priestley, A.2
  • 46
    • 0017396648 scopus 로고
    • Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: substrate activation and inactivation
    • DOI 10.1021/bi00637a018
    • McDowell JH, Kuhn H (1977) Light-induced phosphorylation of rhodopsin in cattle photoreceptor membranes: substrate activation and inactivation. Biochemistry 16:4054-4060. (Pubitemid 8181067)
    • (1977) Biochemistry , vol.16 , Issue.18 , pp. 4054-4060
    • McDowell, J.H.1    Kuehn, H.2
  • 47
    • 0032544190 scopus 로고    scopus 로고
    • Phosphorylation stabilizes the active conformation of rhodopsin
    • DOI 10.1021/bi980933w
    • Gibson SK, Parkes JH, Liebman PA (1998) Phosphorylation stabilizes the active conformation of rhodopsin. Biochemistry 37:11393-11398. (Pubitemid 28388179)
    • (1998) Biochemistry , vol.37 , Issue.33 , pp. 11393-11398
    • Gibson, S.K.1    Parkes, J.H.2    Liebman, P.A.3
  • 48
    • 0034049644 scopus 로고    scopus 로고
    • Light scattering methods to monitor interactions between rhodopsin- containing membranes and soluble proteins
    • Heck M, Pulvermuller A, Hofmann KP (2000) Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins. Methods Enzymol 315:329-347. (Pubitemid 30123300)
    • (2000) Methods in Enzymology , vol.315 , pp. 329-347
    • Heck, M.1    Pulvermuller, A.2    Hofmann, K.P.3
  • 49
    • 0026244229 scopus 로고
    • MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures
    • Kraulis P (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946-950.
    • (1991) J Appl Crystallogr , vol.24 , pp. 946-950
    • Kraulis, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.