메뉴 건너뛰기




Volumn 46, Issue 10, 2010, Pages

A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

Author keywords

[No Author keywords available]

Indexed keywords

A-LAPLACIAN; BAYESIAN; CORRELATED ERRORS; DAILY RAINFALL; ERROR DISTRIBUTIONS; ERROR SOURCES; ESTIMATES OF PARAMETERS; FIRST-ORDER; GAUSSIAN PROBABILITY DISTRIBUTIONS; GENERALIZED LIKELIHOOD FUNCTION; HETEROSCEDASTIC; HYDROLOGIC MODELS; LEAST-SQUARES APPROACH; LIKELIHOOD FUNCTIONS; MULTIPLICATIVE BIAS; NON-GAUSSIAN; PARAMETER UNCERTAINTY; PEAK FLOWS; PREDICTION UNCERTAINTY; PREDICTIVE INFERENCES; PREDICTIVE UNCERTAINTY; RAINFALL-RUNOFF MODELS; REGRESSION MODEL; RESIDUAL ERROR; SIMPLIFYING ASSUMPTIONS; STATISTICAL DESCRIPTIONS; STATISTICAL DISTRIBUTION; TIME-PERIODS; ZERO FLOW;

EID: 77954727893     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2009WR008933     Document Type: Article
Times cited : (462)

References (49)
  • 1
    • 58149089051 scopus 로고    scopus 로고
    • Sustainable water resource management under hydrological uncertainty
    • doi:10.1029/2007WR006736
    • Ajami, N. K., G. M. Hornberger, and D. L. Sunding (2008), Sustainable water resource management under hydrological uncertainty, Water Resour. Res., 44, W11406, doi:10.1029/2007WR006736.
    • (2008) Water Resour. Res. , vol.44
    • Ajami, N.K.1    Hornberger, G.M.2    Sunding, D.L.3
  • 2
    • 0034989285 scopus 로고    scopus 로고
    • A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfallrunoff modeling
    • Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfallrunoff modeling, Water Resour. Res., 37(4), 937-947.
    • (2001) Water Resour. Res. , vol.37 , Issue.4 , pp. 937-947
    • Bates, B.C.1    Campbell, E.P.2
  • 3
    • 0035426008 scopus 로고    scopus 로고
    • Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology
    • Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in mechanistic modeling of complex environmental systems using the GLUE methodology, J. Hydrol., 249, 11-29.
    • (2001) J. Hydrol. , vol.249 , pp. 11-29
    • Beven, K.1    Freer, J.2
  • 4
    • 43449131518 scopus 로고    scopus 로고
    • So just why would a modeler choose to be incoherent
    • Beven, K., P. J. Smith, and J. E. Freer (2008), So just why would a modeler choose to be incoherent, J. Hydrol., 354, 15-32.
    • (2008) J. Hydrol. , vol.354 , pp. 15-32
    • Beven, K.1    Smith, P.J.2    Freer, J.E.3
  • 6
    • 0346186106 scopus 로고    scopus 로고
    • Plant parameter values for models in temperate climates
    • Breuer, L., K. Eckhardt, and H.-G. Frede (2003), Plant parameter values for models in temperate climates, Ecol. Model., 169 (2-3), 237-293.
    • (2003) Ecol. Model. , vol.169 , Issue.2-3 , pp. 237-293
    • Breuer, L.1    Eckhardt, K.2    Frede, H.-G.3
  • 7
    • 51349141022 scopus 로고    scopus 로고
    • Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models
    • doi:10.1029/2007WR006735
    • Clark, M. P., A. G. Slater, D. E. Rupp, R. A. Woods, J. A. Vrugt, H. V. Gupta, T. Wagener, and L. E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/2007WR006735.
    • (2008) Water Resour. Res. , vol.44
    • Clark, M.P.1    Slater, A.G.2    Rupp, D.E.3    Woods, R.A.4    Vrugt, J.A.5    Gupta, H.V.6    Wagener, T.7    Hay, L.E.8
  • 8
    • 0039286161 scopus 로고
    • ARMA models with doubleexponentially distributed noise
    • Damsleth, E., and A. H. El-Shaarawi (1989), ARMA models with doubleexponentially distributed noise, J. R. Stat. Soc., Ser. B, 51(1), 61-69.
    • (1989) J. R. Stat. Soc., Ser. B. , vol.51 , Issue.1 , pp. 61-69
    • Damsleth, E.1    El-Shaarawi, A.H.2
  • 9
    • 75749139354 scopus 로고    scopus 로고
    • Uncertainty in river discharge observations: A quantitative analysis
    • Di Baldassarre, G., and A. Montanari (2009), Uncertainty in river discharge observations: A quantitative analysis, Hydrol. Earth Syst. Sci., 13, 913-921.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 913-921
    • Di Baldassarre, G.1    Montanari, A.2
  • 10
    • 33644551546 scopus 로고    scopus 로고
    • Model parameter estimation experiment (MOPEX): An overview of science strategy and major results from the second and third workshops
    • Duan, Q., et al. (2006), Model Parameter Estimation Experiment (MOPEX): An overview of science strategy and major results from the second and third workshops, J. Hydrol., 320, 3-17.
    • (2006) J. Hydrol. , vol.320 , pp. 3-17
    • Duan, Q.1
  • 11
    • 13244265879 scopus 로고    scopus 로고
    • Assessing uncertainties in a conceptual water balance model using Bayesian methodology
    • Engeland, K., C. Xu, and L. Gottschalk (2005), Assessing uncertainties in a conceptual water balance model using Bayesian methodology, Hydrol. Sci. J., 50, 45-63.
    • (2005) Hydrol. Sci. J. , vol.50 , pp. 45-63
    • Engeland, K.1    Xu, C.2    Gottschalk, L.3
  • 12
    • 34247570378 scopus 로고    scopus 로고
    • A comparison of alternative multiobjective calibration strategies for hydrological modeling
    • DOI 10.1029/2006WR005098
    • Fenicia, F., H. H. G. Savenije, P. Matgen, and L. Pfister (2007), A comparison of alternative multiobjective calibration strategies for hydrological modeling, Water Resour. Res., 43, W03434, doi:10.1029/2006WR005098. (Pubitemid 46682804)
    • (2007) Water Resources Research , vol.43 , Issue.3
    • Fenicia, F.1    Savenije, H.H.G.2    Matgen, P.3    Pfister, L.4
  • 13
    • 0032351391 scopus 로고    scopus 로고
    • On Bayesian modeling of fat tails and skewness
    • Fernandez, C, and M. J. F. Steel (1998), On Bayesian modeling of fat tails and skewness, J. Am. Stat. Assoc, 93, 359-371.
    • (1998) J. Am. Stat. Assoc. , vol.93 , pp. 359-371
    • Fernandez, C.1    Steel, M.J.F.2
  • 14
    • 17844398019 scopus 로고    scopus 로고
    • Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas
    • doi:10.1029/2003WR002901
    • Feyen, L., and S. M. Gorelick (2004), Framework to evaluate the worth of hydraulic conductivity data for optimal groundwater resources management in ecologically sensitive areas, Water Resour. Res., 41, W03019, doi:10.1029/2003WR002901.
    • (2004) Water Resour. Res. , vol.41
    • Feyen, L.1    Gorelick, S.M.2
  • 15
    • 33845700101 scopus 로고    scopus 로고
    • Parameter optimization and uncertainty assessment for largescale stream flow forecasting
    • Feyen, L., J. A. Vrugt, B. O. Nuallain, J. van der Knijff, and A. de Roo (2007), Parameter optimization and uncertainty assessment for largescale stream flow forecasting, J. Hydrol., 332, 276-289.
    • (2007) J. Hydrol. , vol.332 , pp. 276-289
    • Feyen, L.1    Vrugt, J.A.2    Nuallain, B.O.3    Van Der Knijff, J.4    De Roo, A.5
  • 16
    • 72149095854 scopus 로고    scopus 로고
    • Generic error model for calibration and uncertainty estimation of hydrological models
    • doi:10.1029/2007WR006691
    • Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and uncertainty estimation of hydrological models, Water Resour. Res., 44, W00B07, doi:10.1029/2007WR006691.
    • (2008) Water Resour. Res. , vol.44
    • Gotzinger, J.1    Bardossy, A.2
  • 17
    • 0027790160 scopus 로고
    • How much complexity is warranted in a rainfall-runoff model?
    • doi:10.1029/93WR00877
    • Jakeman, A. J., and G. M. Hornberger (1993), How much complexity is warranted in a rainfall-runoff model?, Water Resour. Res., 29(8), 2637-2649, doi:10.1029/93WR00877.
    • (1993) Water Resour. Res. , vol.29 , Issue.8 , pp. 2637-2649
    • Jakeman, A.J.1    Hornberger, G.M.2
  • 18
    • 13444254931 scopus 로고
    • Computer generation of the exponential power distribution
    • Johnson, M. (1979), Computer generation of the exponential power distribution, J. Stat. Comput. Sim., 9(3), 239-240.
    • (1979) J. Stat. Comput. Sim. , vol.9 , Issue.3 , pp. 239-240
    • Johnson, M.1
  • 19
    • 33646495330 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006a), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 20
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 2. Application
    • doi:10.1029/2005WR004376
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006b), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, doi:10.1029/2005WR004376.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 21
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker, R., and G. Bassett Jr. (1978), Regression quantiles, Econometrica, 46(1), 33-50.
    • (1978) Econometrica , vol.46 , Issue.1 , pp. 33-50
    • Koenker, R.1    Bassett Jr., G.2
  • 22
    • 0020969493 scopus 로고
    • Improved parameter inference in catchment models, 1. Evaluating parameter uncertainty
    • doi:10.1029/WR019i005p01151
    • Kuczera, G. (1983), Improved parameter inference in catchment models, 1. Evaluating parameter uncertainty, Water Resour. Res., 19(5), 1151-1162, doi:10.1029/WR019i005p01151.
    • (1983) Water Resour. Res. , vol.19 , Issue.5 , pp. 1151-1162
    • Kuczera, G.1
  • 23
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211 (1-4), 69-85.
    • (1998) J. Hydrol. , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 24
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterizing model error using storm-dependent parameters, J. Hydrol., 331, 161-177, doi:10.1016/j.jhydrol.2006.05.010. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 25
    • 33748808177 scopus 로고    scopus 로고
    • Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology
    • Mantovan, P., and E. Todini (2006), Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology, J. Hydrol, 330, 368-381.
    • (2006) J. Hydrol , vol.330 , pp. 368-381
    • Mantovan, P.1    Todini, E.2
  • 26
    • 28244439991 scopus 로고    scopus 로고
    • Hydrological model selection: A Bayesian alternative
    • DOI 10.1029/2004WR003719, W10422
    • Marshall, L., D. Nott, and A. Sharma (2005), Hydrological model selection: A Bayesian alternative, Water Resour. Res., 41, W10422, doi: 10.1029/2004WR003719. (Pubitemid 41705706)
    • (2005) Water Resources Research , vol.41 , Issue.10
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 27
    • 67649865631 scopus 로고    scopus 로고
    • Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme
    • doi:10.1029/2008WR007288
    • McMillan, H., and M. Clark (2009), Rainfall-runoff model calibration using informal likelihood measures within a Markov chain Monte Carlo sampling scheme, Water Resour. Res., 45, W04418, doi:10.1029/2008WR007288.
    • (2009) Water Resour. Res. , vol.45
    • McMillan, H.1    Clark, M.2
  • 28
    • 85041973854 scopus 로고
    • The exact likelihood function for a mixed autoregressive-moving average process
    • Newbold, P. (1974), The exact likelihood function for a mixed autoregressive-moving average process, Biometrika, 61(3), 423-426.
    • (1974) Biometrika , vol.61 , Issue.3 , pp. 423-426
    • Newbold, P.1
  • 29
    • 72149112778 scopus 로고    scopus 로고
    • Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters
    • doi:10.1029/2009WR007814
    • Reichert, P., and J. Mieleitner (2009), Analyzing input and structural uncertainty of nonlinear dynamic models with stochastic, time-dependent parameters, Water Resour. Res., 45, W10402, doi:10.1029/2009WR007814.
    • (2009) Water Resour. Res. , vol.45
    • Reichert, P.1    Mieleitner, J.2
  • 30
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, G. Kuczera, M. A. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res. , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.A.4    Franks, S.W.5
  • 31
    • 33845710167 scopus 로고    scopus 로고
    • Quantifying hydrological modeling errors through a mixture of normal distributions
    • Schaefli, B., D. B. Talamba, and A. Musy (2007), Quantifying hydrological modeling errors through a mixture of normal distributions, J. Hydrol, 332, 303-315.
    • (2007) J. Hydrol , vol.332 , pp. 303-315
    • Schaefli, B.1    Talamba, D.B.2    Musy, A.3
  • 32
    • 78049432883 scopus 로고    scopus 로고
    • Inaccurate numerical implementation of conceptual hydrologic models corrupts accuracy and efficiency of MCMC simulation
    • doi:10.1029/2009WR008648, in press
    • Schoups, G., J. A. Vrugt, F. Fenicia, and N. C. van de Giesen (2010), Inaccurate numerical implementation of conceptual hydrologic models corrupts accuracy and efficiency of MCMC simulation, Water Resour. Res., doi:10.1029/2009WR008648, in press.
    • (2010) Water Resour. Res.
    • Schoups, G.1    Vrugt, J.A.2    Fenicia, F.3    Van De Giesen, N.C.4
  • 33
    • 70349291168 scopus 로고    scopus 로고
    • Model complexity control for hydrologic prediction
    • doi:10.1029/2008WR006836
    • Schoups, G., N. C. van de Giesen, and H. H. G. Savenije (2008), Model complexity control for hydrologic prediction, Water Resour. Res., 44, W00B03, doi:10.1029/2008WR006836.
    • (2008) Water Resour. Res. , vol.44
    • Schoups, G.1    Van De Giesen, N.C.2    Savenije, H.H.G.3
  • 34
    • 68949104874 scopus 로고    scopus 로고
    • Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques
    • doi:10.1029/2007WR006705
    • Smith, T. J., and L. A. Marshall (2008), Bayesian methods in hydrologic modeling: A study of recent advancements in Markov chain Monte Carlo techniques, Water Resour. Res., 44, W00B05, doi:10.1029/2007WR006705.
    • (2008) Water Resour. Res. , vol.44
    • Smith, T.J.1    Marshall, L.A.2
  • 35
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models-correlated and heteroscedastic error cases
    • doi:10.1029/WR016i002p00430
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models-correlated and heteroscedastic error cases, Water Resour. Res., 16(2), 430-442, doi:10.1029/WR016i002p00430.
    • (1980) Water Resour. Res. , vol.16 , Issue.2 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 36
    • 69949188688 scopus 로고    scopus 로고
    • Appraisal of the generalized likelihood uncertainty estimation (GLUE) method
    • doi:10.1029/2008WR006822
    • Stedinger, J. R., R. M. Vogel, S. U. Lee, and R. Batchelder (2008), Appraisal of the generalized likelihood uncertainty estimation (GLUE) method, Water Resour. Res., 44, W00B06, doi:10.1029/2008WR006822.
    • (2008) Water Resour. Res. , vol.44
    • Stedinger, J.R.1    Vogel, R.M.2    Lee, S.U.3    Batchelder, R.4
  • 37
    • 57849128804 scopus 로고    scopus 로고
    • Differential evolution Markov chain with snooker updater and fewer chains
    • ter Braak, C. J. F., and J. A. Vrugt (2008), Differential evolution Markov chain with snooker updater and fewer chains, Stat. Comput., 18, 435-446.
    • (2008) Stat. Comput. , vol.18 , pp. 435-446
    • Ter Braak, C.J.F.1    Vrugt, J.A.2
  • 38
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • DOI 10.1029/2000WR900405
    • Thiemann, M., M. Trosset, H. V. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37(10), 2521-2535, doi:10.1029/2000WR900405. (Pubitemid 32908202)
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3    Sorooshian, S.4
  • 39
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • doi:10.1029/2008WR006825
    • Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/2008WR006825.
    • (2009) Water Resour. Res. , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 40
    • 0036998958 scopus 로고    scopus 로고
    • Toward improved identifiability of hydrologic model parameters: The information content of experimental data
    • doi:10.1029/2001WR001118
    • Vrugt, J. A., W. Bouten, H. V. Gupta, and S. Sorooshian (2002), Toward improved identifiability of hydrologic model parameters: The information content of experimental data, Water Resour. Res., 38(12), 1312, doi:10.1029/ 2001WR001118.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1312
    • Vrugt, J.A.1    Bouten, W.2    Gupta, H.V.3    Sorooshian, S.4
  • 41
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 42
    • 27744595678 scopus 로고    scopus 로고
    • Improved inverse modeling for flow and transport in subsurface media: Combined parameter and state estimation
    • DOI 10.1029/2005GL023940, L18408
    • Vrugt, J. A., B. A. Robinson, and V. V. Vesselinov (2005), Improved inverse modeling of flow and transport in subsurface media: Combined parameter and state estimation, Geophys. Res. Lett., 32, L18408, doi:10.1029/2005GL023940. (Pubitemid 41582567)
    • (2005) Geophysical Research Letters , vol.32 , Issue.18 , pp. 1-5
    • Vrugt, J.A.1    Robinson, B.A.2    Vesselinov, V.V.3
  • 43
    • 33744917802 scopus 로고    scopus 로고
    • Application of stochastic parameter optimization to the sacramento soil moisture accounting model
    • Vrugt, J. A., H. V. Gupta, S. C. Dekker, S. Sorooshian, T. Wagener, and W. Bouten (2006), Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting Model, J. Hydrol., 325, 288-307.
    • (2006) J. Hydrol. , vol.325 , pp. 288-307
    • Vrugt, J.A.1    Gupta, H.V.2    Dekker, S.C.3    Sorooshian, S.4    Wagener, T.5    Bouten, W.6
  • 44
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008a), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 45
    • 70349739462 scopus 로고    scopus 로고
    • Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches to hydrologic modeling
    • doi:10.1007/s00477-008-0274-y
    • Vrugt, J. A., C. J. F. ter Braak, H. V. Gupta, and B. A. Robinson (2008b), Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches to hydrologic modeling, Stoch. Env. Res. Risk A., 23, 1059-1060, doi:10.1007/s00477-008-0274-y.
    • (2008) Stoch. Env. Res. Risk A. , vol.23 , pp. 1059-1060
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Gupta, H.V.3    Robinson, B.A.4
  • 46
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman, and D. Higdon (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci., 10, 273-290.
    • (2009) Int. J. Nonlinear Sci. , vol.10 , pp. 273-290
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Diks, C.G.H.3    Robinson, B.A.4    Hyman, J.M.5    Higdon, D.6
  • 48
    • 36749086915 scopus 로고    scopus 로고
    • Bayesian un certainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland)
    • DOI 10.1029/2006WR005497
    • Yang, J., P. Reichert, and K. C. Abbaspour (2007), Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River basin (Switzerland), Water Resour. Res., 43, W10401, doi:10.1029/2006WR005497. (Pubitemid 350210151)
    • (2007) Water Resources Research , vol.43 , Issue.10
    • Yang, J.1    Reichert, P.2    Abbaspour, K.C.3
  • 49
    • 68949084337 scopus 로고    scopus 로고
    • Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization
    • doi:10.1029/2008WR006833
    • Zhang, Z., T. Wagener, P. Reed, and R. Bhushan (2008), Reducing uncertainty in predictions in ungauged basins by combining hydrologic indices regionalization and multiobjective optimization, Water Resour. Res., 44, W00B04, doi:10.1029/2008WR006833.
    • (2008) Water Resour. Res. , vol.44
    • Zhang, Z.1    Wagener, T.2    Reed, P.3    Bhushan, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.