메뉴 건너뛰기




Volumn 34, Issue 9, 2011, Pages 1057-1065

Prediction of problematic wine fermentations using artificial neural networks

Author keywords

Artificial neural networks; Fermentation; Pattern recognition; Wine

Indexed keywords

BIOPROCESSES; CABERNET-SAUVIGNON; INDUSTRIAL FERMENTATION; NONLINEAR PATTERN; PREDICTOR VARIABLES; WINE FERMENTATION; WINE PRODUCTION;

EID: 81755172025     PISSN: 16157591     EISSN: 16157605     Source Type: Journal    
DOI: 10.1007/s00449-011-0557-4     Document Type: Article
Times cited : (17)

References (30)
  • 1
    • 0035107918 scopus 로고    scopus 로고
    • Stuck and slow fermentations in enology: Statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate
    • DOI 10.1016/S1389-1723(01)80063-3
    • L Blateyron JM Sablayrolles 2001 Stuck and slow fermentations in enology: statistical study of causes and effectiveness of combined additions of oxygen and diammonium phosphate J Biosci Bioeng 91 184 189 10.1263/jbb.91.184 1:CAS:528:DC%2BD3MXis1Kns7g%3D (Pubitemid 32226030)
    • (2001) Journal of Bioscience and Bioengineering , vol.91 , Issue.2 , pp. 184-189
    • Blateyron, L.1    Sablayrolles, J.M.2
  • 2
    • 0033837801 scopus 로고    scopus 로고
    • Diagnosis and rectification of stuck and sluggish fermentations
    • L Bisson C Butzke 2000 Diagnosis and rectification of stuck and sluggish fermentations Am J Enol Viticult 51 168 177 1:CAS:528:DC%2BD3cXmtlSmsLc%3D (Pubitemid 30661151)
    • (2000) American Journal of Enology and Viticulture , vol.51 , Issue.2 , pp. 168-177
    • Bisson, L.F.1    Butzke, C.E.2
  • 4
    • 0036401887 scopus 로고    scopus 로고
    • Classification of fermentation performance by multivariate analysis based on mean hypothesis testing
    • DOI 10.1263/jbb.94.251
    • J Huang H Nanami A Kanda H Shimizu S Shioya 2002 Classification of fermentation performance by multivariate analysis based on Mean Hypothesis Testing J Biosci Bioeng 94 251 257 1:CAS:528:DC%2BD38XptlaktrY%3D (Pubitemid 35192073)
    • (2002) Journal of Bioscience and Bioengineering , vol.94 , Issue.3 , pp. 251-257
    • Huang, J.1    Nanami, H.2    Kanda, A.3    Shimizu, H.4    Shioya, S.5
  • 5
    • 0242390969 scopus 로고    scopus 로고
    • On-line batch process monitoring using a consecutively updated multiway principal component analysis model
    • DOI 10.1016/S0098-1354(03)00151-0
    • JM Lee Ch Yoo IB Lee 2003 On-line batch process monitoring using a consecutively updated multiway principal component analysis model Comput Chem Eng 27 1903 1912 10.1016/S0098-1354(03)00151-0 1:CAS:528:DC%2BD3sXotlygsLk%3D (Pubitemid 37408621)
    • (2003) Computers and Chemical Engineering , vol.27 , Issue.12 , pp. 1903-1912
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 6
    • 33645344085 scopus 로고    scopus 로고
    • Industrial experiences with multivariate statistical analysis of batch process data
    • 10.1016/j.chemolab.2005.10.006 1:CAS:528:DC%2BD28XivVCmtr4%3D
    • L Chiang R Leardi R Pell M Seasholtz 2006 Industrial experiences with multivariate statistical analysis of batch process data Chemom Intell Lab Syst 81 109 119 10.1016/j.chemolab.2005.10.006 1:CAS:528:DC%2BD28XivVCmtr4%3D
    • (2006) Chemom Intell Lab Syst , vol.81 , pp. 109-119
    • Chiang, L.1    Leardi, R.2    Pell, R.3    Seasholtz, M.4
  • 7
    • 34250815100 scopus 로고    scopus 로고
    • Study of the application of multiway multivariate techniques to model data from an industrial fermentation process
    • DOI 10.1016/j.aca.2007.05.007, PII S0003267007008677
    • A Ferreira J Lopes J Menezes 2007 Study of the application of multiway multivariate techniques to model data from an industrial fermentation process Anal Chim Acta 595 120 127 10.1016/j.aca.2007.05.007 1:CAS:528: DC%2BD2sXntF2ku7o%3D (Pubitemid 46990313)
    • (2007) Analytica Chimica Acta , vol.595 , Issue.1-2 SPEC. ISS. , pp. 120-127
    • Ferreira, A.P.1    Lopes, J.A.2    Menezes, J.C.3
  • 8
    • 60249088159 scopus 로고    scopus 로고
    • Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals
    • 10.1016/j.cherd.2008.08.019 1:CAS:528:DC%2BD1MXjs1Wlsrk%3D
    • A Faggian P Facco F Doplicher F Bezzo M Barolo 2009 Multivariate statistical real-time monitoring of an industrial fed-batch process for the production of specialty chemicals Chem Eng Res Des 87 325 334 10.1016/j.cherd.2008.08.019 1:CAS:528:DC%2BD1MXjs1Wlsrk%3D
    • (2009) Chem Eng Res des , vol.87 , pp. 325-334
    • Faggian, A.1    Facco, P.2    Doplicher, F.3    Bezzo, F.4    Barolo, M.5
  • 9
    • 46149090559 scopus 로고    scopus 로고
    • Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis
    • DOI 10.1016/j.aca.2007.10.042, PII S0003267007017874
    • C Bevin R Dambergs A Fergusson D Cozzolino 2008 Varietal discrimination of Australian wines by means of mid-infrared spectroscopy and multivariate analysis Anal Chim Acta 621 19 23 10.1016/j.aca.2007.10.042 1:CAS:528: DC%2BD1cXns1artb0%3D (Pubitemid 351902193)
    • (2008) Analytica Chimica Acta , vol.621 , Issue.1 , pp. 19-23
    • Bevin, C.J.1    Dambergs, R.G.2    Fergusson, A.J.3    Cozzolino, D.4
  • 10
    • 33845421286 scopus 로고    scopus 로고
    • Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale
    • DOI 10.1002/bit.21067
    • D Cozzolino M Parker R Dambergs M Herderich M Gishen 2006 Chemometrics and visible-near infrared spectroscopic monitoring of red wine fermentation in a pilot scale Biotechnol Bioeng 95 1101 1107 10.1002/bit.21067 1:CAS:528:DC%2BD28Xht1Grt7bE (Pubitemid 44901325)
    • (2006) Biotechnology and Bioengineering , vol.95 , Issue.6 , pp. 1101-1107
    • Cozzolino, D.1    Parker, M.2    Dambergs, R.G.3    Herderich, M.4    Gishen, M.5
  • 11
    • 34347379313 scopus 로고    scopus 로고
    • Using data mining techniques to predict industrial wine problem fermentations
    • DOI 10.1016/j.foodcont.2006.09.010, PII S095671350600274X
    • A Urtubia J Pérez-Correa A Soto P Pszczólkowski 2007 Using data mining techniques to predict industrial wine problem fermentations Food Control 18 1512 1517 10.1016/j.foodcont.2006.09.010 1:CAS:528: DC%2BD2sXnsFKksb4%3D (Pubitemid 47022904)
    • (2007) Food Control , vol.18 , Issue.12 , pp. 1512-1517
    • Urtubia, A.1    Perez-Correa, J.R.2    Soto, A.3    Pszczolkowski, P.4
  • 12
    • 79960370254 scopus 로고    scopus 로고
    • Application of MPCA and MPLS on industrial batch bioprocesses
    • 10.1016/j.jbiotec.2010.09.284
    • A Urtubia M Emparan S Almonacid M Pinto M Valdenegro 2010 Application of MPCA and MPLS on industrial batch bioprocesses J Biotechnol 150 310 10.1016/j.jbiotec.2010.09.284
    • (2010) J Biotechnol , vol.150 , pp. 310
    • Urtubia, A.1    Emparan, M.2    Almonacid, S.3    Pinto, M.4    Valdenegro, M.5
  • 13
    • 79960375489 scopus 로고    scopus 로고
    • Predictive power of LDA to discriminate abnormal wine fermentations
    • Urtubia A, Roger JM (2011). Predictive power of LDA to discriminate abnormal wine fermentations. J Chemom. http://onlinelibrary.wiley.com/doi/10. 1002/cem.1362/pdf
    • (2011) J Chemom.
    • Urtubia, A.1    Roger, J.M.2
  • 14
    • 0035914569 scopus 로고    scopus 로고
    • Nonlinear process monitoring using bottle-neck neural networks
    • 10.1016/S0003-2670(01)01266-1
    • U Thissen W Melsen L Buydens 2001 Nonlinear process monitoring using bottle-neck neural networks Anal Chim Acta 446 369 381 10.1016/S0003-2670(01) 01266-1
    • (2001) Anal Chim Acta , vol.446 , pp. 369-381
    • Thissen, U.1    Melsen, W.2    Buydens, L.3
  • 15
    • 39149085365 scopus 로고    scopus 로고
    • Artificial neural networks in chemometrics: History, examples and perspectives
    • 10.1016/j.microc.2007.11.008 1:CAS:528:DC%2BD1cXitFaksb8%3D
    • F Marini R Bucci A Magri 2008 Artificial neural networks in chemometrics: history, examples and perspectives Microchem J 88 178 185 10.1016/j.microc. 2007.11.008 1:CAS:528:DC%2BD1cXitFaksb8%3D
    • (2008) Microchem J , vol.88 , pp. 178-185
    • Marini, F.1    Bucci, R.2    Magri, A.3
  • 16
    • 2942709626 scopus 로고    scopus 로고
    • Multivariate monitoring of fermentation processes with non-linear modelling methods
    • DOI 10.1016/j.aca.2004.01.060, PII S0003267004002430
    • J Lopes J Menezes 2004 Multivariate monitoring of fermentation processes with non-linear modeling methods Anal Chim Acta 515 101 108 10.1016/j.aca.2004. 01.060 1:CAS:528:DC%2BD2cXkvFyrtLY%3D (Pubitemid 38798211)
    • (2004) Analytica Chimica Acta , vol.515 , Issue.1 , pp. 101-108
    • Lopes, J.A.1    Menezes, J.C.2
  • 17
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • Jain A, Mao J, Mohiuddin K (1996) Artificial neural networks: a tutorial. Computer 9:31-44 (Pubitemid 126515068)
    • (1996) Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • DOI 10.1016/0893-6080(89)90020-8
    • K Hornik M Stinchcombe H White 1989 Multilayer feedforward networks are universal approximators Neural Netw 2 359 366 10.1016/0893-6080(89)90020-8 (Pubitemid 20609008)
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik Kurt1    Stinchcombe Maxwell2    White Halbert3
  • 21
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • 10.1016/0893-6080(91)90009-T
    • K Hornik 1991 Approximation capabilities of multilayer feedforward networks Neural Netw 4 251 257 10.1016/0893-6080(91)90009-T
    • (1991) Neural Netw , vol.4 , pp. 251-257
    • Hornik, K.1
  • 24
    • 1442287500 scopus 로고    scopus 로고
    • Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks
    • DOI 10.1016/j.foodchem.2003.09.027
    • M Penza G Cassano 2004 Chemometric characterization of Italian wines by thin-film multisensors array and artificial neural networks Food Chem 86 283 296 10.1016/j.foodchem.2003.09.027 1:CAS:528:DC%2BD2cXhs1Cqsr0%3D (Pubitemid 38283584)
    • (2004) Food Chemistry , vol.86 , Issue.2 , pp. 283-296
    • Penza, M.1    Cassano, G.2
  • 25
    • 1242271199 scopus 로고    scopus 로고
    • Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines
    • Perez-Magariño S, Ortega-Heras M, Gonzalez-San Jose M, Boger Z (2004) Comparative study of artificial neural network and multivariate methods to classify Spanish DO rose wines. Talanta 62:983-990
    • (2004) Talanta , vol.62 , pp. 983-990
    • Perez-Magariño S, O.1
  • 26
    • 50149101346 scopus 로고    scopus 로고
    • Classification of Slovak white wines using artificial neural networks and discriminant techniques
    • 10.1016/j.foodchem.2008.06.047 1:CAS:528:DC%2BD1cXhtVGjsLvI
    • D Kruzlicova J Mocak B Balla J Petka M Farkova J Havel 2009 Classification of Slovak white wines using artificial neural networks and discriminant techniques Food Chem 112 1046 1052 10.1016/j.foodchem.2008.06.047 1:CAS:528:DC%2BD1cXhtVGjsLvI
    • (2009) Food Chem , vol.112 , pp. 1046-1052
    • Kruzlicova, D.1    Mocak, J.2    Balla, B.3    Petka, J.4    Farkova, M.5    Havel, J.6
  • 28
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • DOI 10.1016/S1532-0464(03)00034-0
    • S Dreiseitl L Ohno-Machado 2002 Logistic regression and artificial neural network classification models: a methodology review J Biomed Inform 35 352 359 10.1016/S1532-0464(03)00034-0 (Pubitemid 36951935)
    • (2002) Journal of Biomedical Informatics , vol.35 , Issue.5-6 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 29
    • 81755164304 scopus 로고    scopus 로고
    • Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality
    • King S (2003) Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality. In: Proceedings of the 13th Central Hardwood Forest Conference, pp 349-358
    • (2003) Proceedings of the 13th Central Hardwood Forest Conference , pp. 349-358
    • King, S.1
  • 30
    • 0032744082 scopus 로고    scopus 로고
    • Que son las redes neuronales artificiales? Aplicaciones realizadas en el ambito de las adicciones
    • P Palmer M Montaño 1999 ¿Qué son las Redes Neuronales Artificiales? Aplicaciones realizadas en el ámbito de las adicciones Adicciones 11 3 243 255 (Pubitemid 29503314)
    • (1999) Adicciones , vol.11 , Issue.3 , pp. 243-255
    • Palmer Pol, A.1    Montano Moreno, J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.