-
1
-
-
0036589259
-
-
For more such examples, see pages 4414 and 4415 of ref. [1 l].: J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire, Chem. Rev. 2002, 102, 1359.
-
(2002)
Chem. Rev.
, vol.102
, pp. 1359
-
-
Hassan, J.1
Sevignon, M.2
Gozzi, C.3
Schulz, E.4
Lemaire, M.5
-
5
-
-
0034725892
-
-
M. Botta, F. Corelli, F. Gasparrini, F. Messina, C. Mugnaini, J. Org. Chem. 2000, 65, 4736.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 4736
-
-
Botta, M.1
Corelli, F.2
Gasparrini, F.3
Messina, F.4
Mugnaini, C.5
-
6
-
-
0026664704
-
-
R. M. Knobler, F. B. Radlwimmer, M. J. Lane, Nucleic Acids Res. 1992, 20, 4553.
-
(1992)
Nucleic Acids Res.
, vol.20
, pp. 4553
-
-
Knobler, R.M.1
Radlwimmer, F.B.2
Lane, M.J.3
-
7
-
-
78650127406
-
-
G. A. Salman, M. Hussain, A. Villinger, P. Langer, Synlett 2010, 3031.
-
(2010)
Synlett
, pp. 3031
-
-
Salman, G.A.1
Hussain, M.2
Villinger, A.3
Langer, P.4
-
10
-
-
51549089956
-
-
S. Napier, S. M. Marcuccio, H. Tye, M. Whittaker, Tetrahedron Lett. 2008, 49, 6314.
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 6314
-
-
Napier, S.1
Marcuccio, S.M.2
Tye, H.3
Whittaker, M.4
-
12
-
-
67749106331
-
-
S. E. Denmark, R. C. Smith, W. T. T. Chang, J. M. Muhuhi, J. Am. Chem. Soc. 2009, 131, 3104.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3104
-
-
Denmark, S.E.1
Smith, R.C.2
Chang, W.T.T.3
Muhuhi, J.M.4
-
18
-
-
10044220360
-
-
A. C. Spivey, C. J. G. Gripton, J. P. Hannah, Curr. Org. Synth. 2004, 1, 211.
-
(2004)
Curr. Org. Synth.
, vol.1
, pp. 211
-
-
Spivey, A.C.1
Gripton, C.J.G.2
Hannah, J.P.3
-
20
-
-
12344293447
-
-
and references therein
-
For a useful discussion of the variety of organosilanes used in biaryl synthesis and the disadvantages of fluoride activation, see:, S. E. Denmark, M. H. Ober, Adv. Synth. Catal. 2004, 346, 1703, and references therein. The authors also report a fluoride-free, base-activated coupling protocol using aryl(dimethyl)silanols.
-
(2004)
Adv. Synth. Catal.
, vol.346
, pp. 1703
-
-
Denmark, S.E.1
Ober, M.H.2
-
21
-
-
0025283733
-
-
For examples of organosilane species that have been successfully employed as aryl donors in fluoride-activated cross-coupling reactions with aryl halides see: for aryl(fluro)silanes: Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 1990, 31, 2719
-
(1990)
Tetrahedron Lett.
, vol.31
, pp. 2719
-
-
Hatanaka, Y.1
Hiyama, T.2
-
23
-
-
0028242735
-
-
aryl(chloro)silanes
-
Y. Hatanaka, K. Goda, Y. Okahara, T. Hiyama, Tetrahedron 1994, 50, 8301; aryl(chloro)silanes
-
(1994)
Tetrahedron
, vol.50
, pp. 8301
-
-
Hatanaka, Y.1
Goda, K.2
Okahara, Y.3
Hiyama, T.4
-
24
-
-
0001163849
-
-
F. Homsi, K. Hosoi, K. Nozaki, T. Hiyama, J. Organomet. Chem. 2001, 624, 208
-
(2001)
J. Organomet. Chem.
, vol.624
, pp. 208
-
-
Homsi, F.1
Hosoi, K.2
Nozaki, K.3
Hiyama, T.4
-
25
-
-
0000831654
-
-
aryl (trialkoxy)silanes
-
See ref. 19(c); aryl(halo)silacyclobutanes: S. E. Denmark, Z. C. Wu, Org. Lett. 1999, 1, 1495; aryl (trialkoxy)silanes
-
(1999)
Org. Lett.
, vol.1
, pp. 1495
-
-
Denmark, S.E.1
Wu, Z.C.2
-
29
-
-
15044357725
-
-
aryl(triallyl)silanes
-
M. L. Clarke, Adv. Synth. Catal. 2005, 347, 303; aryl(triallyl)silanes
-
(2005)
Adv. Synth. Catal.
, vol.347
, pp. 303
-
-
Clarke, M.L.1
-
30
-
-
0344012056
-
-
Y. Nakao, T. Oda, A. K. Sahoo, T. Hiyama, J. Organomet. Chem. 2003, 687, 570
-
(2003)
J. Organomet. Chem.
, vol.687
, pp. 570
-
-
Nakao, Y.1
Oda, T.2
Sahoo, A.K.3
Hiyama, T.4
-
31
-
-
3242806746
-
-
A. K. Sahoo, Y. Nakao, T. Hiyama, Chem. Lett. 2004, 33, 632.
-
(2004)
Chem. Lett.
, vol.33
, pp. 632
-
-
Sahoo, A.K.1
Nakao, Y.2
Hiyama, T.3
-
32
-
-
0031023975
-
-
E. Hagiwara, K. Gouda, Y. Hatanaka, T. Hiyama, Tetrahedron Lett. 1997, 38, 439.
-
(1997)
Tetrahedron Lett.
, vol.38
, pp. 439
-
-
Hagiwara, E.1
Gouda, K.2
Hatanaka, Y.3
Hiyama, T.4
-
33
-
-
0035191692
-
-
M. Murata, R. Shimazaki, S. Watanabe, Y. Masuda, Synthesis 2001, 2231.
-
(2001)
Synthesis
, pp. 2231
-
-
Murata, M.1
Shimazaki, R.2
Watanabe, S.3
Masuda, Y.4
-
34
-
-
47049083399
-
-
S. N. Chen, W. Y. Wu, F. Y. Tsai, Tetrahedron 2008, 64, 8164.
-
(2008)
Tetrahedron
, vol.64
, pp. 8164
-
-
Chen, S.N.1
Wu, W.Y.2
Tsai, F.Y.3
-
36
-
-
75149192691
-
-
B. C. Ranu, K. Chattopadhyay, L. Adak, A. Saha, S. Bhadra, R. Dey, D. Saha, Pure Appl. Chem. 2009, 81, 2337.
-
(2009)
Pure Appl. Chem.
, vol.81
, pp. 2337
-
-
Ranu, B.C.1
Chattopadhyay, K.2
Adak, L.3
Saha, A.4
Bhadra, S.5
Dey, R.6
Saha, D.7
-
38
-
-
35248856022
-
-
M. Suguro, Y. Yamamura, T. Koike, A. Mori, React. Funct. Polym. 2007, 67, 1264.
-
(2007)
React. Funct. Polym.
, vol.67
, pp. 1264
-
-
Suguro, M.1
Yamamura, Y.2
Koike, T.3
Mori, A.4
-
39
-
-
33947717315
-
-
M. Endo, T. Sakurai, S. Ojima, T. Katayama, M. Unno, H. Matsumoto, S. Kowase, H. Sano, M. Kosugi, K. Fugami, Synlett 2007, 0749.
-
(2007)
Synlett
, pp. 0749
-
-
Endo, M.1
Sakurai, T.2
Ojima, S.3
Katayama, T.4
Unno, M.5
Matsumoto, H.6
Kowase, S.7
Sano, H.8
Kosugi, M.9
Fugami, K.10
-
41
-
-
0034714410
-
-
E. Hirabayashi, A. Mori, J. Kawashima, M. Suguro, Y. Nishihara, T. Hiyama, J. Org. Chem. 2000, 65, 5342.
-
(2000)
J. Org. Chem.
, vol.65
, pp. 5342
-
-
Hirabayashi, E.1
Mori, A.2
Kawashima, J.3
Suguro, M.4
Nishihara, Y.5
Hiyama, T.6
-
43
-
-
62249117775
-
-
H. F. Sore, C. M. Boehner, S. J. F. MacDonald, D. Norton, D. J. Foxd, D. R. Spring, Org. Biomol. Chem. 2009, 7, 1068.
-
(2009)
Org. Biomol. Chem.
, vol.7
, pp. 1068
-
-
Sore, H.F.1
Boehner, C.M.2
MacDonald, S.J.F.3
Norton, D.4
Foxd, D.J.5
Spring, D.R.6
-
44
-
-
78650746226
-
-
H. F. Sore, C. M. Boehner, L. Laraia, P. Logoteta, C. Prestinari, M. Scott, K. Williams, W. R. J. D. Galloway, D. R. Spring, Org. Biomol. Chem. 2011, 9, 504.
-
(2011)
Org. Biomol. Chem.
, vol.9
, pp. 504
-
-
Sore, H.F.1
Boehner, C.M.2
Laraia, L.3
Logoteta, P.4
Prestinari, C.5
Scott, M.6
Williams, K.7
Galloway, W.R.J.D.8
Spring, D.R.9
-
45
-
-
0000198109
-
-
S. E. Denmark, D. Wehrli, J. Y. Choi, Org. Lett. 2000, 2, 2491.
-
(2000)
Org. Lett.
, vol.2
, pp. 2491
-
-
Denmark, S.E.1
Wehrli, D.2
Choi, J.Y.3
-
49
-
-
0041851126
-
-
B. M. Trost, M. R. Machacek, Z. T. Ball, Org. Lett. 2003, 5, 1895.
-
(2003)
Org. Lett.
, vol.5
, pp. 1895
-
-
Trost, B.M.1
MacHacek, M.R.2
Ball, Z.T.3
-
50
-
-
0034820257
-
-
K. Itami, T. Nokami, J. I. Yoshida, J. Am. Chem. Soc. 2001, 123, 5600.
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 5600
-
-
Itami, K.1
Nokami, T.2
Yoshida, J.I.3
-
54
-
-
43049156291
-
-
S. Napier, S. M. Marcuccio, H. Tye, M. Whittaker, Tetrahedron Lett. 2008, 49, 3939.
-
(2008)
Tetrahedron Lett.
, vol.49
, pp. 3939
-
-
Napier, S.1
Marcuccio, S.M.2
Tye, H.3
Whittaker, M.4
-
55
-
-
33749651001
-
-
A notable exception are the aryl(2-(hydroxymethyl)phenyl)dimethylsilanes developed by Hiyama and co-workers, which could be successfully reacted with a broad range of aryl iodides in the presence of potassium carbonate and copper iodide to furnish biaryl derivatives without the need for fluoride activators. See: Y. Nakao, A. K. Sahoo, A. Yada, J. S. Chen, T. Hiyama, Sci. Technol. Adv. Mater. 2006, 7, 536
-
(2006)
Sci. Technol. Adv. Mater.
, vol.7
, pp. 536
-
-
Nakao, Y.1
Sahoo, A.K.2
Yada, A.3
Chen, J.S.4
Hiyama, T.5
-
56
-
-
34748864354
-
-
Y. Nakao, J. S. Chen, M. Tanaka, T. Hiyama, J. Am. Chem. Soc. 2007, 129, 11694
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 11694
-
-
Nakao, Y.1
Chen, J.S.2
Tanaka, M.3
Hiyama, T.4
-
57
-
-
18744398730
-
-
Y. Nakao, H. Imanaka, A. K. Sahoo, A. Yada, T. Hiyama, J. Am. Chem. Soc. 2005, 127, 6952
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 6952
-
-
Nakao, Y.1
Imanaka, H.2
Sahoo, A.K.3
Yada, A.4
Hiyama, T.5
-
58
-
-
33644543025
-
-
Y. Nakao, A. K. Sahoo, H. Imanaka, A. Yada, T. Hiyama, Pure Appl. Chem. 2006, 78, 435. However, the use of aryl bromides in such reactions is much less common; the development of a protocol that allows the coupling of a wide range of aryl bromides under mild fluoride-free conditions with a masked silanol(ate)would be of value as bromo derivatives are more readily available and typically easier to synthesise than their iodo counterparts
-
(2006)
Pure Appl. Chem.
, vol.78
, pp. 435
-
-
Nakao, Y.1
Sahoo, A.K.2
Imanaka, H.3
Yada, A.4
Hiyama, T.5
-
59
-
-
0035533034
-
-
M. R. Owen, C. Luscombe, L. W. Lai, S. Godbert, D. L. Crookes, D. Emiabata-Smith, Org. Process Res. Dev. 2001, 5, 308.
-
(2001)
Org. Process Res. Dev.
, vol.5
, pp. 308
-
-
Owen, M.R.1
Luscombe, C.2
Lai, L.W.3
Godbert, S.4
Crookes, D.L.5
Emiabata-Smith, D.6
-
61
-
-
0035533036
-
-
D. Lendrem, M. Owen, S. Godbert, Org. Process Res. Dev. 2001, 5, 324.
-
(2001)
Org. Process Res. Dev.
, vol.5
, pp. 324
-
-
Lendrem, D.1
Owen, M.2
Godbert, S.3
-
62
-
-
33344460691
-
-
In a DoE, the ranges of the factors to be investigated (defining the covered experimental space) should be sufficiently wide so as to ensure that the optimum is residing within the experimental space studied, but not so large that experiments become impractical (e.g., an extremely long reaction time) or indeed, that the overall process yields optimised values for a given reaction component that are undesirable (e.g., a very large catalyst loading). See Ref. [50].: V. K. Aggarwal, A. C. Staubitz, M. Owen, Org. Process Res. Dev. 2006, 10, 64.
-
(2006)
Org. Process Res. Dev.
, vol.10
, pp. 64
-
-
Aggarwal, V.K.1
Staubitz, A.C.2
Owen, M.3
-
64
-
-
34347340382
-
-
M. L. Clarke, M. B. France, J. A. Fuentes, E. J. Milton, G. J. Roff, Beilstein J. Org. Chem. 2007, 3, 18.
-
(2007)
Beilstein J. Org. Chem.
, vol.3
, pp. 18
-
-
Clarke, M.L.1
France, M.B.2
Fuentes, J.A.3
Milton, E.J.4
Roff, G.J.5
-
65
-
-
84880296641
-
-
W. R. J. D. Galloway, A. Isidro-Llobet, D. R. Spring, Nature Commun. 2010, 1, 80.
-
(2010)
Nature Commun.
, vol.1
, pp. 80
-
-
Galloway, W.R.J.D.1
Isidro-Llobet, A.2
Spring, D.R.3
|