메뉴 건너뛰기




Volumn 185, Issue 1, 2012, Pages 43-65

Shared domains of competence of approximate learning models using measures of separability of classes

Author keywords

Classification; Data complexity; Domains of competence; Multi Layer Perceptron; Radial Basis Function Network; Support Vector Machine

Indexed keywords

ARTIFICIAL NEURAL NETWORK MODELS; BEHAVIOR PATTERNS; COMPLEX CONFIGURATION; COMPLEXITY METRICS; DATA COMPLEXITY; DATA SETS; LEARNING METHODS; LEARNING MODELS; LEARNING VECTOR QUANTIZATION; MULTI LAYER PERCEPTRON; PERFORMANCE OF CLASSIFIER; RADIAL BASIS FUNCTIONS; SEQUENTIAL MINIMAL OPTIMIZATION; SUPPORT VECTOR;

EID: 80755128993     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2011.09.022     Document Type: Article
Times cited : (27)

References (40)
  • 1
    • 73949099341 scopus 로고    scopus 로고
    • Faster training using fusion of activation functions for feed forward neural networks
    • M. Asaduzzaman, M. Shahjahan, and K. Murase Faster training using fusion of activation functions for feed forward neural networks International Journal of Neural Systems 19 2009 437 448
    • (2009) International Journal of Neural Systems , vol.19 , pp. 437-448
    • Asaduzzaman, M.1    Shahjahan, M.2    Murase, K.3
  • 3
    • 34250007650 scopus 로고    scopus 로고
    • Advanced Information and Knowledge Processing Springer-Verlag New York, Inc., Secaucus, NJ, USA
    • M. Basu, and T.K. Ho Data Complexity in Pattern Recognition Advanced Information and Knowledge Processing 2006 Springer-Verlag New York, Inc., Secaucus, NJ, USA
    • (2006) Data Complexity in Pattern Recognition
    • Basu, M.1    Ho, T.K.2
  • 4
    • 33646808651 scopus 로고    scopus 로고
    • Data complexity assessment in undersampled classification of high-dimensional biomedical data
    • DOI 10.1016/j.patrec.2006.01.006, PII S0167865506000183
    • R. Baumgartner, and R.L. Somorjai Data complexity assessment in undersampled classification of high-dimensional biomedical data Pattern Recognition Letters 12 2006 1383 1389 (Pubitemid 43767472)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.12 , pp. 1383-1389
    • Baumgartner, R.1    Somorjai, R.L.2
  • 5
    • 14844318559 scopus 로고    scopus 로고
    • Domain of competence of XCS classifier system in complexity measurement space
    • DOI 10.1109/TEVC.2004.840153
    • E. Bernadó-Mansilla, and T.K. Ho Domain of competence of XCS classifier system in complexity measurement space IEEE Transactions on Evolutionary Computation 9 2005 82 104 (Pubitemid 40337302)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.1 , pp. 82-104
    • Bernado-Mansilla, E.1    Ho, T.K.2
  • 6
    • 0035575921 scopus 로고    scopus 로고
    • Nearest prototype classifier designs: An experimental study
    • DOI 10.1002/int.1068
    • J.C. Bezdek, and L. Kuncheva Nearest prototype classifier designs: an experimental study International Journal of Intelligent Systems 16 2001 1445 1473 (Pubitemid 33110647)
    • (2001) International Journal of Intelligent Systems , vol.16 , Issue.12 , pp. 1445-1473
    • Bezdek, J.C.1    Kuncheva, L.I.2
  • 8
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D. Broomhead, and D. Lowe Multivariable functional interpolation and adaptive networks Complex Systems 2 1988 321 355
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 10
    • 34447633358 scopus 로고    scopus 로고
    • Integrating support vector machines and neural networks
    • DOI 10.1016/j.neunet.2006.12.003, PII S0893608006002796
    • R. Capparuccia, R. De Leone, and E. Marchitto Integrating support vector machines and neural networks Neural Networks 20 2007 590 597 (Pubitemid 47088183)
    • (2007) Neural Networks , vol.20 , Issue.5 , pp. 590-597
    • Capparuccia, R.1    De Leone, R.2    Marchitto, E.3
  • 11
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes, and V. Vapnik Support vector networks Machine Learning 20 1995 273 297
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 34147092493 scopus 로고    scopus 로고
    • Task decomposition and modular single-hidden-layer perceptron classifiers for multi-class learning problems
    • DOI 10.1016/j.patcog.2007.01.002, PII S0031320307000167
    • G. Daqi, L. Chunxia, and Y. Yunfan Task decomposition and modular single-hidden-layer perceptron classifiers for multi-class learning problems Pattern Recognition 40 2007 2226 2236 (Pubitemid 46574768)
    • (2007) Pattern Recognition , vol.40 , Issue.8 , pp. 2226-2236
    • Daqi, G.1    Chunxia, L.2    Yunfan, Y.3
  • 13
    • 0037410630 scopus 로고    scopus 로고
    • Feature subset selection using a new definition of classifiability
    • DOI 10.1016/S0167-8655(02)00303-3, PII S0167865502003033
    • M. Dong, and R. Kothari Feature subset selection using a new definition of classificabilty Pattern Recognition Letters 24 2003 1215 1225 (Pubitemid 36225838)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1215-1225
    • Dong, M.1    Kothari, R.2
  • 14
    • 77952485893 scopus 로고    scopus 로고
    • A fast multi-output rbf neural network construction method
    • D. Du, K. Li, and M. Fei A fast multi-output rbf neural network construction method Neurocomputing 73 2010 2196 2202
    • (2010) Neurocomputing , vol.73 , pp. 2196-2202
    • Du, D.1    Li, K.2    Fei, M.3
  • 15
    • 77958153264 scopus 로고    scopus 로고
    • So near and yet so far: New insight into properties of some well-known classifier paradigms
    • D. Fisch, B. Kühbeck, B. Sick, and S.J. Ovaska So near and yet so far: new insight into properties of some well-known classifier paradigms Information Sciences 180 2010 3381 3401
    • (2010) Information Sciences , vol.180 , pp. 3381-3401
    • Fisch, D.1    Kühbeck, B.2    Sick, B.3    Ovaska, S.J.4
  • 17
    • 33746829161 scopus 로고    scopus 로고
    • Performance analysis of LVQ algorithms: A statistical physics approach
    • DOI 10.1016/j.neunet.2006.05.010, PII S0893608006000839
    • A. Ghosh, M. Biehl, and B. Hammer Performance analysis of lvq algorithms: a statistical physics approach Neural Networks 19 2006 817 829 (Pubitemid 44177562)
    • (2006) Neural Networks , vol.19 , Issue.6-7 , pp. 817-829
    • Ghosh, A.1    Biehl, M.2    Hammer, B.3
  • 20
    • 67649404578 scopus 로고    scopus 로고
    • On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures
    • S.W. Kim, and B.J. Oommen On using prototype reduction schemes to enhance the computation of volume-based inter-class overlap measures Pattern Recognition 42 2009 2695 2704
    • (2009) Pattern Recognition , vol.42 , pp. 2695-2704
    • Kim, S.W.1    Oommen, B.J.2
  • 21
    • 28244495034 scopus 로고    scopus 로고
    • Classifiability-based omnivariate decision trees
    • DOI 10.1109/TNN.2005.852864
    • Y. Li, M. Dong, and R. Kothari Classifiability-based omnivariate decision trees IEEE Transactions on Neural Networks 16 2005 1547 1560 (Pubitemid 41709651)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1547-1560
    • Li, Y.1    Dong, M.2    Kothari, R.3
  • 22
    • 60249094201 scopus 로고    scopus 로고
    • A study on the use of statistical tests for experimentation with neural networks: Analysis of parametric test conditions and non-parametric tests
    • J. Luengo, S. García, and F. Herrera A study on the use of statistical tests for experimentation with neural networks: analysis of parametric test conditions and non-parametric tests Expert Systems with Applications 36 2009 7798 7808
    • (2009) Expert Systems with Applications , vol.36 , pp. 7798-7808
    • Luengo, J.1    García, S.2    Herrera, F.3
  • 23
    • 70450224484 scopus 로고    scopus 로고
    • Domains of competence of fuzzy rule based classification systems with data complexity measures: A case of study using a fuzzy hybrid genetic based machine learning method
    • J. Luengo, and F. Herrera Domains of competence of fuzzy rule based classification systems with data complexity measures: a case of study using a fuzzy hybrid genetic based machine learning method Fuzzy Sets and Systems 161 2010 3 19
    • (2010) Fuzzy Sets and Systems , vol.161 , pp. 3-19
    • Luengo, J.1    Herrera, F.2
  • 24
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • S. Maldonado, R. Weber, and J. Basak Simultaneous feature selection and classification using kernel-penalized support vector machines Information Sciences 181 2010 115 128
    • (2010) Information Sciences , vol.181 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 25
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M.F. Moller A scaled conjugate gradient algorithm for fast supervised learning Neural Networks 6 1993 525 533
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 26
    • 25144505553 scopus 로고    scopus 로고
    • Data characterization for effective prototype selection
    • Pattern Recognition and Image Analysis: Second Iberian Conference, IbPRIA 2005. Proceedings
    • R.A. Mollineda, J.S. Sánchez, and J.M. Sotoca Data characterization for effective prototype selection Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis 2005 Springer 27 34 (Pubitemid 41343167)
    • (2005) Lecture Notes in Computer Science , vol.3523 , Issue.2 , pp. 27-34
    • Mollineda, R.A.1    Sanchez, J.S.2    Sotoca, J.M.3
  • 27
    • 13844266749 scopus 로고    scopus 로고
    • Data classification with radial basis function networks based on a novel kernel density estimation algorithm
    • Y.J. Oyang, S.C. Hwang, Y.Y. Ou, C.Y. Chen, and Z.W. Chen Data classification with radial basis function networks based on a novel kernel density estimation algorithm IEEE Transactions on Neural Networks 16 2005 225 236
    • (2005) IEEE Transactions on Neural Networks , vol.16 , pp. 225-236
    • Oyang, Y.J.1    Hwang, S.C.2    Ou, Y.Y.3    Chen, C.Y.4    Chen, Z.W.5
  • 28
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press Cambridge, MA, USA
    • J.C. Platt Fast training of support vector machines using sequential minimal optimization Advances in Kernel Methods: Support Vector Learning 1999 MIT Press Cambridge, MA, USA 185 208
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 30
    • 55949121890 scopus 로고    scopus 로고
    • Improving radial basis function kernel classification through incremental learning and automatic parameter selection
    • C. Renjifo, D. Barsic, C. Carmen, K. Norman, and G.S. Peacock Improving radial basis function kernel classification through incremental learning and automatic parameter selection Neurocomputing 72 2008 3 14
    • (2008) Neurocomputing , vol.72 , pp. 3-14
    • Renjifo, C.1    Barsic, D.2    Carmen, C.3    Norman, K.4    Peacock, G.S.5
  • 32
    • 34547399424 scopus 로고    scopus 로고
    • An analysis of how training data complexity affects the nearest neighbor classifiers
    • J.S. Sánchez, R.A. Mollineda, and J.M. Sotoca An analysis of how training data complexity affects the nearest neighbor classifiers Pattern Analysis & Applications 10 2007 189 201
    • (2007) Pattern Analysis & Applications , vol.10 , pp. 189-201
    • Sánchez, J.S.1    Mollineda, R.A.2    Sotoca, J.M.3
  • 34
    • 0343019657 scopus 로고
    • Pattern classifier design by linear programming
    • F.W. Smith Pattern classifier design by linear programming IEEE Transactions on Computers 17 1968 367 372
    • (1968) IEEE Transactions on Computers , vol.17 , pp. 367-372
    • Smith, F.W.1
  • 35
    • 41749093196 scopus 로고    scopus 로고
    • Risk-sensitive loss functions for sparse multi-category classification problems
    • S. Suresh, N. Sundararajan, and P. Saratchandran Risk-sensitive loss functions for sparse multi-category classification problems Information Sciences 178 2008 2621 2638
    • (2008) Information Sciences , vol.178 , pp. 2621-2638
    • Suresh, S.1    Sundararajan, N.2    Saratchandran, P.3
  • 36
    • 39549116990 scopus 로고    scopus 로고
    • Recursive support vector machines for dimensionality reduction
    • DOI 10.1109/TNN.2007.908267
    • Q. Tao, D. Chu, and J. Wang Recursive support vector machines for dimensionality reduction IEEE Transactions on Neural Networks 19 2008 189 193 (Pubitemid 351279237)
    • (2008) IEEE Transactions on Neural Networks , vol.19 , Issue.1 , pp. 189-193
    • Tao, Q.1    Chu, D.2    Wang, J.3
  • 37
    • 56549083671 scopus 로고    scopus 로고
    • Fuzzy classification using information theoretic learning vector quantization
    • T. Villmann, B. Hammer, F.M. Schleif, W. Hermann, and M. Cottrell Fuzzy classification using information theoretic learning vector quantization Neurocomputing 71 2008 3070 3076
    • (2008) Neurocomputing , vol.71 , pp. 3070-3076
    • Villmann, T.1    Hammer, B.2    Schleif, F.M.3    Hermann, W.4    Cottrell, M.5
  • 38
    • 69449099279 scopus 로고    scopus 로고
    • A novel kernel-based maximum a posteriori classification method
    • Z. Xu, K. Huang, J. Zhu, I. King, and M. Lyu A novel kernel-based maximum a posteriori classification method Neural Networks 22 2009 977 987
    • (2009) Neural Networks , vol.22 , pp. 977-987
    • Xu, Z.1    Huang, K.2    Zhu, J.3    King, I.4    Lyu, M.5
  • 39
    • 70350728414 scopus 로고    scopus 로고
    • Margin calibration in svm class-imbalanced learning
    • C.Y. Yang, J.S. Yang, and J.J. Wang Margin calibration in svm class-imbalanced learning Neurocomputing 73 2009 397 411
    • (2009) Neurocomputing , vol.73 , pp. 397-411
    • Yang, C.Y.1    Yang, J.S.2    Wang, J.J.3
  • 40
    • 52149104247 scopus 로고    scopus 로고
    • Analysis of the initial values in split-complex backpropagation algorithm
    • S.S. Yang, S. Siu, and C.L. Ho Analysis of the initial values in split-complex backpropagation algorithm IEEE Transactions on Neural Networks 19 2008 1564 1573
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 1564-1573
    • Yang, S.S.1    Siu, S.2    Ho, C.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.