메뉴 건너뛰기




Volumn 19, Issue 6, 2009, Pages 437-448

Faster training using fusion of activation functions for feed forward neural networks

Author keywords

Activation function; Combination of activation functions; Convergence; Neural network; Training

Indexed keywords

ACTIVATION FUNCTIONS; BENCHMARK CLASSIFICATION; BREAST CANCER; CHAOTIC TIME SERIES PREDICTION; ERROR FUNCTION; HEART DISEASE; MULTI-LAYER NETWORK; MULTILAYER FEEDFORWARD NEURAL NETWORKS; NEURAL NETWORK TRAINING; SUBGOALS; TIME SERIES PREDICTION; TRAINING METHODS;

EID: 73949099341     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0129065709002130     Document Type: Article
Times cited : (27)

References (23)
  • 1
    • 0027364993 scopus 로고
    • Parallel backpropagation learning algorithms on Cray Y-MP8/864 Supercomputer
    • S. L. Hung and H. Adeli, Parallel backpropagation learning algorithms on Cray Y-MP8/864 Supercomputer, Neurocomputing 5(6) (1993) 287-302.
    • (1993) Neurocomputing , vol.5 , Issue.6 , pp. 287-302
    • Hung, S.L.1    Adeli, H.2
  • 2
    • 0028379094 scopus 로고
    • Object-oriented back propagation and its application to structural design
    • S. L. Hung and H. Adeli, Object-oriented back propagation and its application to structural design, Neurocomputing 6(1) (1994) 45-55.
    • (1994) Neurocomputing , vol.6 , Issue.1 , pp. 45-55
    • Hung, S.L.1    Adeli, H.2
  • 3
    • 0347526141 scopus 로고    scopus 로고
    • Neural network model for rapid forecasting of freeway link travel time
    • A. Dharia and H. Adeli, Neural network model for rapid forecasting of freeway link travel time, Engineering Applications of Artificial Intelligence 16(7- 8) (2003) 607-613.
    • (2003) Engineering Applications of Artificial Intelligence , vol.16 , Issue.7-8 , pp. 607-613
    • Dharia, A.1    Adeli, H.2
  • 4
    • 1642480196 scopus 로고    scopus 로고
    • Toward intelligent variable message signs in freeway work zones: A neural network approach
    • S. Hooshdar and H. Adeli, Toward intelligent variable message signs in freeway work zones: A neural network approach, Journal of Transportation Engineering 130(1) (2004) 83-93.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.1 , pp. 83-93
    • Hooshdar, S.1    Adeli, H.2
  • 5
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • X. H. Yu and G. A. Chen, Efficient backpropagation learning using optimal learning rate and momentum, Neural Networks 10(3) (1997) 517-527.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2
  • 6
  • 7
    • 9244257332 scopus 로고    scopus 로고
    • Magnified gradient function with deterministic weight modification in adaptive learning
    • S.-C. Ng, C.-C. Cheung and S.-H. Leung, Magnified gradient function with deterministic weight modification in adaptive learning, IEEE Trans. Neural Network 15(6) (2004) 1411-1423.
    • (2004) IEEE Trans. Neural Network , vol.15 , Issue.6 , pp. 1411-1423
    • Ng, S.-C.1    Cheung, C.-C.2    Leung, S.-H.3
  • 8
    • 38349054314 scopus 로고    scopus 로고
    • Multilayer nonnegative matrix factorization using projected gradient approaches
    • A. Cichocki and R. Zdunek, Multilayer nonnegative matrix factorization using projected gradient approaches, Int. J. Neural Systems 17(6) (2007) 431-446.
    • (2007) Int. J. Neural Systems , vol.17 , Issue.6 , pp. 431-446
    • Cichocki, A.1    Zdunek, R.2
  • 9
    • 65249159583 scopus 로고    scopus 로고
    • Improving supervised learning by adapting the problem to the learner
    • J. Menke and T. Martinez, Improving supervised learning by adapting the problem to the learner, Int. J. Neural Systems 19(1) (2009) 1-9.
    • (2009) Int. J. Neural Systems , vol.19 , Issue.1 , pp. 1-9
    • Menke, J.1    Martinez, T.2
  • 13
    • 73949144349 scopus 로고    scopus 로고
    • Fast training of multilayer perceptrons with least mean fourth (LMF) algorithm
    • S. Abid and F. Fnaiech, Fast training of Multilayer perceptrons with Least mean Fourth (LMF) Algorithm, Int. J. Soft Computing 3(5) (2008) 359-367.
    • (2008) Int. J. Soft Computing , vol.3 , Issue.5 , pp. 359-367
    • Abid, S.1    Fnaiech, F.2
  • 14
    • 73949086914 scopus 로고    scopus 로고
    • Improving convergence of backpropagation algorithm using exponential cost function
    • J. Kamruzzaman, Improving convergence of backpropagation algorithm using exponential cost function, IEEJ Trans. EIS. 123(5) (2003) 999-1003.
    • (2003) IEEJ Trans. EIS. , vol.123 , Issue.5 , pp. 999-1003
    • Kamruzzaman, J.1
  • 15
    • 0342680650 scopus 로고
    • Does the neuron learn like synapse?
    • ed. D. Touretzy, Morgan Kaufmann
    • R. Tawel, Does the neuron learn like synapse? in Advance in Neural Information Processing System, ed. D. Touretzy, Vol.1 (Morgan Kaufmann, 1989), pp. 169-176.
    • (1989) Advance in Neural Information Processing System , vol.1 , pp. 169-176
    • Tawel, R.1
  • 18
    • 0000155950 scopus 로고
    • The cascadecorrelation learning architecture
    • ed. D. S. Touretzky, San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Lebiere, The cascadecorrelation learning architecture, in Advances in Neural Information Processing Systems, ed. D. S. Touretzky, Vol.2 (San Mateo, CA: Morgan Kaufmann 1990) 524-532.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 19
    • 0004042460 scopus 로고
    • PROBEN1-A set of neural network benchmark problems and benchmarking rules
    • Faculty of Informatics, University of Karlsruhe
    • L. L. Prechelt, PROBEN1-A set of neural network benchmark problems and benchmarking rules, Technical Report 21/94, Faculty of Informatics, (University of Karlsruhe, 1994).
    • (1994) Technical Report 21/94
    • Prechelt, L.L.1
  • 20
    • 0003000735 scopus 로고
    • Fast learning variations on backpropagation: An empirical study
    • D. Touretzky, G. Hinton and T. Sejnowski, (eds.) San Mateo, CA
    • S. E. Fahlman, Fast learning variations on backpropagation: An empirical study, in Proc. Connectionist Models Summer School, D. Touretzky, G. Hinton and T. Sejnowski, (eds.) (San Mateo, CA, 1989) 38-51.
    • (1989) Proc. Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 21
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: The RPROP algorithm, in Proc. Int. Conf. Neural Networks, Vol.1, (1993) 586-591.
    • (1993) Proc. Int. Conf. Neural Networks , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 22
    • 0032122764 scopus 로고    scopus 로고
    • Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm
    • N. K. Treadgold and T. D. Gedeon, Simulated annealing and weight decay in adaptive learning: The SARPROP algorithm, IEEE Trans. Neural Networks 9 (1998) 662-668.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 662-668
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 23
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Networks 5 (1994) 989-993.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.