메뉴 건너뛰기




Volumn 36, Issue 10, 2009, Pages 4810-4818

Noise injection for training artificial neural networks: A comparison with weight decay and early stopping

Author keywords

Artificial neural networks; BANN; Early stopping; Jitter; Noise injection; Overfitting; Regularization; Weight decay

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECAY (ORGANIC); JITTER; STATISTICAL TESTS; ULTRASONICS;

EID: 70349658745     PISSN: 00942405     EISSN: None     Source Type: Journal    
DOI: 10.1118/1.3213517     Document Type: Article
Times cited : (179)

References (33)
  • 1
    • 0027604029 scopus 로고
    • Simulation studies of data classification by artificial neural networks: Potential applications in medical imaging and decision making
    • 0897-1889.
    • Y. Wu, K. Doi, C. E. Metz, N. Asada, and M. L. Giger, " Simulation studies of data classification by artificial neural networks: Potential applications in medical imaging and decision making.," J. Digit Imaging 0897-1889 6, 117-125 (1993).
    • (1993) J. Digit Imaging , vol.6 , pp. 117-125
    • Wu, Y.1    Doi, K.2    Metz, C.E.3    Asada, N.4    Giger, M.L.5
  • 2
    • 0030062375 scopus 로고    scopus 로고
    • Malignant and benign clustered microcalcifications: Automated feature analysis and classification
    • 0033-8419.
    • Y. Jiang, " Malignant and benign clustered microcalcifications: Automated feature analysis and classification.," Radiology 0033-8419 198, 671-678 (1996).
    • (1996) Radiology , vol.198 , pp. 671-678
    • Jiang, Y.1
  • 4
    • 0035437718 scopus 로고    scopus 로고
    • Ideal observer approximation using Bayesian classification neural networks
    • DOI 10.1109/42.952727, PII S027800620108661X
    • M. A. Kupinski, D. C. Edwards, M. L. Giger, and C. E. Metz, " Ideal observer approximation using Bayesian classification neural networks.," IEEE Trans. Med. Imaging 0278-0062 20, 886-899 (2001). 10.1109/42.952727 (Pubitemid 32992592)
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.9 , pp. 886-899
    • Kupinski, M.A.1    Edwards, D.C.2    Giger, M.L.3    Metz, C.E.4
  • 5
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • 0893-6080,. 10.1016/0893-6080(91)90033-2
    • J. Sietsma and R. J. F. Dow, " Creating artificial neural networks that generalize.," Neural Networks 0893-6080 4, 67-79 (1991). 10.1016/0893-6080(91)90033-2
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 6
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • 0899-7667,. 10.1162/neco.1992.4.1.1
    • S. Geman, E. Bienenstock, and R. Doursat, " Neural networks and the bias/variance dilemma.," Neural Comput. 0899-7667 4, 1-58 (1992). 10.1162/neco.1992.4.1.1
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 10
    • 85027229772 scopus 로고    scopus 로고
    • Neural Network FAQ. Retrieved September 9, (website:).
    • W. S. Sarle, Neural Network FAQ. Retrieved September 9, 2008 (website: ftp://ftp.sas.com/pub/neural/FAQ.html).
    • (2008)
    • Sarle, W.S.1
  • 11
    • 2342565172 scopus 로고    scopus 로고
    • The effects of adding noise during backpropagation training on a generalization performance
    • 0899-7667,. 10.1162/neco.1996.8.3.643
    • G. Z. An, " The effects of adding noise during backpropagation training on a generalization performance.," Neural Comput. 0899-7667 8, 643-674 (1996). 10.1162/neco.1996.8.3.643
    • (1996) Neural Comput. , vol.8 , pp. 643-674
    • An, G.Z.1
  • 12
    • 0001740650 scopus 로고
    • Training with noise is equivalent to Tikhonov regularization
    • 0899-7667,. 10.1162/neco.1995.7.1.108
    • C. M. Bishop, " Training with noise is equivalent to Tikhonov regularization.," Neural Comput. 0899-7667 7, 108-116 (1995). 10.1162/neco.1995.7.1.108
    • (1995) Neural Comput. , vol.7 , pp. 108-116
    • Bishop, C.M.1
  • 13
    • 0013230715 scopus 로고    scopus 로고
    • Noise injection: Theoretical prospects
    • 0899-7667,. 10.1162/neco.1997.9.5.1093
    • Y. Grandvalet, S. Canu, and S. Boucheron, " Noise injection: theoretical prospects.," Neural Comput. 0899-7667 9, 1093-1108 (1997). 10.1162/neco.1997.9.5.1093
    • (1997) Neural Comput. , vol.9 , pp. 1093-1108
    • Grandvalet, Y.1    Canu, S.2    Boucheron, S.3
  • 14
    • 0026624071 scopus 로고
    • Using additive noise in back-propagation training
    • 1045-9227,. 10.1109/72.105415
    • L. Holmström and P. Koistinen, " Using additive noise in back-propagation training.," IEEE Trans. Neural Netw. 1045-9227 3, 24-38 (1992). 10.1109/72.105415
    • (1992) IEEE Trans. Neural Netw. , vol.3 , pp. 24-38
    • Holmström, L.1    Koistinen, P.2
  • 15
    • 0026858102 scopus 로고
    • Noise injection into inputs in backpropagation learning
    • 0018-9472,. 10.1109/21.155944
    • K. Matsuoka, " Noise injection into inputs in backpropagation learning.," IEEE Trans. Syst. Man Cybern. 0018-9472 22, 436-440 (1992). 10.1109/21.155944
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , pp. 436-440
    • Matsuoka, K.1
  • 17
    • 0033317598 scopus 로고    scopus 로고
    • Bayesian approach to neural-network modeling with input uncertainty
    • DOI 10.1109/72.809073
    • W. A. Wright, " Bayesian approach to neural-network modeling with input uncertainty.," IEEE Trans. Neural Netw. 1045-9227 10, 1261-1270 (1999). 10.1109/72.809073 (Pubitemid 30536598)
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.6 , pp. 1261-1270
    • Wright, W.A.1
  • 18
    • 0034244839 scopus 로고    scopus 로고
    • Neural network modelling with input uncertainty: Theory and application
    • 10.1023/A:1008111920791
    • W. A. Wright, G. Ramage, D. Cornford, and I. Nabney, " Neural network modelling with input uncertainty: Theory and application.," J. VLSI Sig. Proc. Syst. 26, 169-188 (2000). 10.1023/A:1008111920791
    • (2000) J. VLSI Sig. Proc. Syst. , vol.26 , pp. 169-188
    • Wright, W.A.1    Ramage, G.2    Cornford, D.3    Nabney, I.4
  • 19
    • 33645204782 scopus 로고    scopus 로고
    • Comparison of two methods of adding jitter to artificial neural network training
    • (Elsevier, Chicago)
    • R. M. Zur, Y. Jiang, and C. E. Metz, " Comparison of two methods of adding jitter to artificial neural network training.," Proceedings of CARS (Elsevier, Chicago, 2004), pp. 886-889.
    • (2004) Proceedings of CARS , pp. 886-889
    • Zur, R.M.1    Jiang, Y.2    Metz, C.E.3
  • 21
    • 0022470978 scopus 로고
    • ROC methodology in radiologic imaging
    • 0020-9996,. 10.1097/00004424-198609000-00009
    • C. E. Metz, " ROC methodology in radiologic imaging.," Invest. Radiol. 0020-9996 21, 720-733 (1986). 10.1097/00004424-198609000-00009
    • (1986) Invest. Radiol. , vol.21 , pp. 720-733
    • Metz, C.E.1
  • 22
    • 34250162528 scopus 로고    scopus 로고
    • Assessment of Medical Imaging Systems and Computer Aids: A Tutorial Review
    • DOI 10.1016/j.acra.2007.03.001, PII S1076633207001377
    • R. F. Wagner, C. E. Metz, and G. Campbell, " Assessment of medical imaging systems and computer aids: A tutorial review.," Acad. Radiol. 1076-6332 14, 723-748 (2007). 10.1016/j.acra.2007.03.001 (Pubitemid 46898203)
    • (2007) Academic Radiology , vol.14 , Issue.6 , pp. 723-748
    • Wagner, R.F.1    Metz, C.E.2    Campbell, G.3
  • 24
    • 0002822137 scopus 로고    scopus 로고
    • 'Proper binormal ROC curves: Theory and maximum-likelihood estimation
    • 0022-2496,. 10.1006/jmps.1998.1218
    • C. E. Metz and X. Pan, " 'Proper binormal ROC curves: Theory and maximum-likelihood estimation.," J. Math. Psychol. 0022-2496 43, 1-33 (1999). 10.1006/jmps.1998.1218
    • (1999) J. Math. Psychol. , vol.43 , pp. 1-33
    • Metz, C.E.1    Pan, X.2
  • 25
    • 49049083896 scopus 로고    scopus 로고
    • Breast US computer-aided diagnosis workstation: Performance with a large clinical diagnostic population
    • 0033-8419,. 10.1148/radiol.2482071778
    • K. Drukker, N. P. Gruszauskas, C. A. Sennett, and M. L. Giger, " Breast US computer-aided diagnosis workstation: Performance with a large clinical diagnostic population.," Radiology 0033-8419 248, 392-397 (2008). 10.1148/radiol.2482071778
    • (2008) Radiology , vol.248 , pp. 392-397
    • Drukker, K.1    Gruszauskas, N.P.2    Sennett, C.A.3    Giger, M.L.4
  • 27
    • 0042025303 scopus 로고    scopus 로고
    • Uncertainty in the output of artificial neural networks
    • 0278-0062,. 10.1109/TMI.2003.815061
    • Y. Jiang, " Uncertainty in the output of artificial neural networks.," IEEE Trans. Med. Imaging 0278-0062 22, 913-921 (2003). 10.1109/TMI.2003.815061
    • (2003) IEEE Trans. Med. Imaging , vol.22 , pp. 913-921
    • Jiang, Y.1
  • 28
    • 0035312886 scopus 로고    scopus 로고
    • Bayesian approach for neural networks - Review and case studies
    • DOI 10.1016/S0893-6080(00)00098-8, PII S0893608000000988
    • J. Lampinen and A. Vehtari, " Bayesian approach for neural networks-review and case studies.," Neural Networks 0893-6080 14, 257-274 (2001). 10.1016/S0893-6080(00)00098-8 (Pubitemid 32288857)
    • (2001) Neural Networks , vol.14 , Issue.3 , pp. 257-274
    • Lampinen, J.1    Vehtari, A.2
  • 29
    • 51749097121 scopus 로고    scopus 로고
    • Classifier performance estimation under the constraint of a finite sample size: Resampling schemes applied to neural network classifiers
    • (IEEE, Orlando)
    • B. Sahiner, H. P. Chan, and L. Hadjiiski, " Classifier performance estimation under the constraint of a finite sample size: resampling schemes applied to neural network classifiers.," Proceedings of IJCNN (IEEE, Orlando, 2007), pp. 1762-1766.
    • (2007) Proceedings of IJCNN , pp. 1762-1766
    • Sahiner, B.1    Chan, H.P.2    Hadjiiski, L.3
  • 30
    • 27644512013 scopus 로고    scopus 로고
    • Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters
    • (IEEE, Washington)
    • W. A. Yousef, R. F. Wagner, and M. H. Loew, " Comparison of non-parametric methods for assessing classifier performance in terms of ROC parameters.," Proceedings of the 33rd AIPR Workshop (IEEE, Washington, 2004), pp. 190-195.
    • (2004) Proceedings of the 33rd AIPR Workshop , pp. 190-195
    • Yousef, W.A.1    Wagner, R.F.2    Loew, M.H.3
  • 32
    • 0033461791 scopus 로고    scopus 로고
    • Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers
    • DOI 10.1118/1.598805
    • H. P. Chan, B. Sahiner, R. F. Wagner, and N. Petrick, " Classifier design for computer-aided diagnosis: Effects of finite sample size on the mean performance of classical and neural network classifiers.," Med. Phys. 0094-2405 26, 2654-2668 (1999). 10.1118/1.598805 (Pubitemid 30007711)
    • (1999) Medical Physics , vol.26 , Issue.12 , pp. 2654-2668
    • Chan, H.-P.1    Sahiner, B.2    Wagner, R.F.3    Petrick, N.4
  • 33
    • 73949105476 scopus 로고    scopus 로고
    • On experimental design and data analysis in receiver operating characteristic (ROC) studies: Lessons learned from papers published in Radiology from 1997 to 2006
    • 0033-8419 (in press).
    • J. Shiraishi, L. Pesce, C. E. Metz, and K. Doi, " On experimental design and data analysis in receiver operating characteristic (ROC) studies: Lessons learned from papers published in Radiology from 1997 to 2006.," Radiology 0033-8419 (in press).
    • Radiology
    • Shiraishi, J.1    Pesce, L.2    Metz, C.E.3    Doi, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.