메뉴 건너뛰기




Volumn 39, Issue 3, 2012, Pages 3432-3437

A feature selection method based on kernel canonical correlation analysis and the minimum Redundancy-Maximum Relevance filter method

Author keywords

Feature selection; KCCA; mRMR; Mutual information; Relevant redundancy

Indexed keywords

BENCHMARK DATASETS; CORRELATED FUNCTIONS; FEATURE SELECTION METHODS; FILTER METHOD; KCCA; KERNEL CANONICAL CORRELATION ANALYSIS; MRMR; MUTUAL INFORMATIONS; RELEVANT REDUNDANCY;

EID: 80255123270     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.09.031     Document Type: Article
Times cited : (82)

References (19)
  • 3
    • 77957865414 scopus 로고    scopus 로고
    • On numerical optimization theory of infinite kernel learning
    • S.O. Akyüz, and G.W. Weber On numerical optimization theory of infinite kernel learning Journal of Global Optimization 48 2010 215 239
    • (2010) Journal of Global Optimization , vol.48 , pp. 215-239
    • Akyüz, S.O.1    Weber, G.W.2
  • 4
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Asuncion, A.; & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science. http://www.ics.uci.edu/∼mlearn/MLRepository.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 6
    • 0003771130 scopus 로고    scopus 로고
    • PhD thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden
    • Borga, M. (1998). Learning multidimensional signal processing. PhD thesis, Department of Electrical Engineering, Linköping University, Linköping, Sweden.
    • (1998) Learning Multidimensional Signal Processing
    • Borga, M.1
  • 8
    • 2942528778 scopus 로고    scopus 로고
    • SINBAD: A neocortical mechanism for discovering environmental variables and regularities hidden in sensory input
    • DOI 10.1007/s00422-004-0464-8
    • O.V. Favorov, and D. Ryder SINBAD: A neocortical mechanism for discovering environmental variables and regularities hidden in sensory input Biological Cybernetics 90 2004 191 202 (Pubitemid 40877328)
    • (2004) Biological Cybernetics , vol.90 , Issue.3 , pp. 191-202
    • Favorov, O.V.1    Ryder, D.2
  • 9
    • 70450273199 scopus 로고    scopus 로고
    • Information theoretic feature extraction for audio-visual speech recognition
    • M. Gurban, and J.P. Thiran Information theoretic feature extraction for audio-visual speech recognition IEEE Transactions on Signal Processing 57 12 2009 4765 4776
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.12 , pp. 4765-4776
    • Gurban, M.1    Thiran, J.P.2
  • 10
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • DOI 10.1162/0899766042321814
    • D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor Canonical correlation analysis: An overview with application to learning methods Neural Computation 16 2004 2639 2664 (Pubitemid 39604012)
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 11
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling Relations between two sets of variates Biometrika 28 1936 321 377
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 12
    • 77954208132 scopus 로고    scopus 로고
    • Feature selection and extraction using an unsupervised biologically-suggested approximation to Gebelein's maximal correlation
    • O. Kursun, and O. Favorov Feature selection and extraction using an unsupervised biologically-suggested approximation to Gebelein's maximal correlation International Journal of Pattern Recognition and Artificial Intelligence 24 3 2010 337 358
    • (2010) International Journal of Pattern Recognition and Artificial Intelligence , vol.24 , Issue.3 , pp. 337-358
    • Kursun, O.1    Favorov, O.2
  • 15
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 2005 1226 1238 (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 17
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • J.M. Sotoca, and F. Pla Supervised feature selection by clustering using conditional mutual information-based distances Pattern Recognition 43 2010 2068 2081
    • (2010) Pattern Recognition , vol.43 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 18
    • 80255141274 scopus 로고    scopus 로고
    • Learning Bayesian networks with combination of MRMR criterion and EMI method
    • F. Tian, F. Liu, Z. Wang, and J. Yu Learning Bayesian networks with combination of MRMR criterion and EMI method PAKDD 2007 2007 801 808
    • (2007) PAKDD , vol.2007 , pp. 801-808
    • Tian, F.1    Liu, F.2    Wang, Z.3    Yu, J.4
  • 19
    • 47649103157 scopus 로고    scopus 로고
    • A two-stage gene selection algorithm by combining relief and mRMR
    • Zhang, Y.; Ding, C.; & Li, T. (2007). A two-stage gene selection algorithm by combining relief and mRMR. BIBE 2007.
    • (2007) BIBE 2007
    • Zhang, Y.1    Ding, C.2    Li, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.