-
1
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. Aggarwal, C. Procopiuc, J. Wolf, P. Yu, and J. Park. Fast algorithms for projected clustering. In Proc. of ACM SIGMOD, pages 61-72, 1999.
-
(1999)
Proc. of ACM SIGMOD
, pp. 61-72
-
-
Aggarwal, C.1
Procopiuc, C.2
Wolf, J.3
Yu, P.4
Park, J.5
-
2
-
-
0039253822
-
Finding generalized projected clusters in high dimensional spaces
-
C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In Proc. of ACM SIGMOD, pages 70-81, 2000.
-
(2000)
Proc. of ACM SIGMOD
, pp. 70-81
-
-
Aggarwal, C.1
Yu, P.2
-
3
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of ACM SIGMOD, pages 94-105, 1998.
-
(1998)
Proc. of ACM SIGMOD
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
4
-
-
1842762839
-
An optimization algorithm for clustering using weighted dissimilarity measures
-
Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition, 37(5):943-952, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.5
, pp. 943-952
-
-
Chan, Y.1
Ching, W.K.2
Ng, M.K.3
Huang, J.Z.4
-
5
-
-
33947177850
-
Optimal variable weighting for ultrametric and additive tree clustering
-
G. De Soete. Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20(3):169-180, 1986.
-
(1986)
Quality and Quantity
, vol.20
, Issue.3
, pp. 169-180
-
-
de Soete, G.1
-
6
-
-
0000962917
-
OVWTRE: A program for optimal variable weighting for ultrametric and addtive tree fitting
-
G. De Soete. OVWTRE: A program for optimal variable weighting for ultrametric and addtive tree fitting. Journal of Classification, 5(1):101-104, 1988.
-
(1988)
Journal of Classification
, vol.5
, Issue.1
, pp. 101-104
-
-
de Soete, G.1
-
7
-
-
0002414638
-
Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables
-
W.S.Desarbo, J. D.Carroll, L. A. Clark, and P. E. Green. Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables. Psychometrika, 49(1):57-78, 1984.
-
(1984)
Psychometrika
, vol.49
, Issue.1
, pp. 57-78
-
-
Desarbo, W.S.1
Carroll, J.D.2
Clark, L.A.3
Green, P.E.4
-
9
-
-
0001739908
-
Variable selection in clustering
-
E. Fowlkes, R. Gnanadesikan, and J. Kettenring. Variable selection in clustering. Journal of Classification, 5(2):205-228, 1988.
-
(1988)
Journal of Classification
, vol.5
, Issue.2
, pp. 205-228
-
-
Fowlkes, E.1
Gnanadesikan, R.2
Kettenring, J.3
-
11
-
-
21844501258
-
Weighting and selection of variables for cluster analysis
-
R. Gnanadesikan, J. Kettenring, and S. Tsao. Weighting and selection of variables for cluster analysis. Journal of Classification, 12(1):113-136, 1995.
-
(1995)
Journal of Classification
, vol.12
, Issue.1
, pp. 113-136
-
-
Gnanadesikan, R.1
Kettenring, J.2
Tsao, S.3
-
12
-
-
0000710590
-
A preliminary study of optimal variable weighting in k-means clustering
-
P. E. Green, J. Carmone, and J. Kim. A preliminary study of optimal variable weighting in k-means clustering. Journal of Classification, 7(2):271-285, 1990.
-
(1990)
Journal of Classification
, vol.7
, Issue.2
, pp. 271-285
-
-
Green, P.E.1
Carmone, J.2
Kim, J.3
-
13
-
-
27144536001
-
Extensions to the k-means algorithms for clustering large data sets with categorical values
-
Z. Huang. Extensions to the k-means algorithms for clustering large data sets with categorical values. Data Ming and Knowledge Discovery, 2(3):283-304, 1998.
-
(1998)
Data Ming and Knowledge Discovery
, vol.2
, Issue.3
, pp. 283-304
-
-
Huang, Z.1
-
14
-
-
18144419389
-
Automated variable weighting in k-means type clustering
-
Z. Huang, M. K. Ng, H. Rong, and Z. Li. Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analayis and Machine Intelligence, 27(5):657-668, 2005.
-
(2005)
IEEE Transactions on Pattern Analayis and Machine Intelligence
, vol.27
, Issue.5
, pp. 657-668
-
-
Huang, Z.1
Ng, M.K.2
Rong, H.3
Li, Z.4
-
17
-
-
0033243629
-
An algorithm for the fitting of a tree metric according to a weightedleast-squares criterion
-
V. Makarenkov and P. Leclerc. An algorithm for the fitting of a tree metric according to a weightedleast-squares criterion. Journal of Classification, 16(1):3-26, 1999.
-
(1999)
Journal of Classification
, vol.16
, Issue.1
, pp. 3-26
-
-
Makarenkov, V.1
Leclerc, P.2
-
18
-
-
0035619721
-
Optimal variable weighting for ultramet-ric and additive trees and k-means partitioning: Methods and software
-
V. Makarenkov and P. Leclerc. Optimal variable weighting for ultramet-ric and additive trees and k-means partitioning: methods and software. Journal of Classification, 18(2):245-271, 2001.
-
(2001)
Journal of Classification
, vol.18
, Issue.2
, pp. 245-271
-
-
Makarenkov, V.1
Leclerc, P.2
-
19
-
-
0002048998
-
A validation study of a variable weighting algorithm for cluster analysis
-
G. Milligan. A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6(1):53-71, 1989.
-
(1989)
Journal of Classification
, vol.6
, Issue.1
, pp. 53-71
-
-
Milligan, G.1
-
20
-
-
0042312608
-
Feature weighting in c-means clustering
-
D. S. Modha and W. S. Spangler. Feature weighting in c-means clustering. Machine Learning, 52(3):217-237, 2003.
-
(2003)
Machine Learning
, vol.52
, Issue.3
, pp. 217-237
-
-
Modha, D.S.1
Spangler, W.S.2
-
21
-
-
0021202650
-
K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
-
S. Selim and M. Ismail. K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):81-87, 1984.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, Issue.1
, pp. 81-87
-
-
Selim, S.1
Ismail, M.2
-
22
-
-
0036211103
-
S-clusters: Capturing subspace correlation in a large data set
-
J. Yang, W. Wang, H. Wang, and P. Yu. S-clusters: capturing subspace correlation in a large data set. In Proc. of ICDE, pages 517-528, 2002.
-
(2002)
Proc. of ICDE
, pp. 517-528
-
-
Yang, J.1
Wang, W.2
Wang, H.3
Yu, P.4
-
23
-
-
13844297591
-
A practical projected clustering algorithm
-
K. Y. Yip, D. W. Cheung, and M. K. Ng. A practical projected clustering algorithm. IEEE Transactions on knowledge and data engineering, 16(11):1387-1397, 2004.
-
(2004)
IEEE Transactions on knowledge and data engineering
, vol.16
, Issue.11
, pp. 1387-1397
-
-
Yip, K.Y.1
Cheung, D.W.2
Ng, M.K.3
|