메뉴 건너뛰기




Volumn , Issue , 2007, Pages 193-209

Weighting method for feature selection in K-means

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85130866618     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (44)

References (23)
  • 2
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C. Aggarwal and P. Yu. Finding generalized projected clusters in high dimensional spaces. In Proc. of ACM SIGMOD, pages 70-81, 2000.
    • (2000) Proc. of ACM SIGMOD , pp. 70-81
    • Aggarwal, C.1    Yu, P.2
  • 3
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. of ACM SIGMOD, pages 94-105, 1998.
    • (1998) Proc. of ACM SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 4
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • Y. Chan, W. K. Ching, M. K. Ng, and J. Z. Huang. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition, 37(5):943-952, 2004.
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 5
    • 33947177850 scopus 로고
    • Optimal variable weighting for ultrametric and additive tree clustering
    • G. De Soete. Optimal variable weighting for ultrametric and additive tree clustering. Quality and Quantity, 20(3):169-180, 1986.
    • (1986) Quality and Quantity , vol.20 , Issue.3 , pp. 169-180
    • de Soete, G.1
  • 6
    • 0000962917 scopus 로고
    • OVWTRE: A program for optimal variable weighting for ultrametric and addtive tree fitting
    • G. De Soete. OVWTRE: A program for optimal variable weighting for ultrametric and addtive tree fitting. Journal of Classification, 5(1):101-104, 1988.
    • (1988) Journal of Classification , vol.5 , Issue.1 , pp. 101-104
    • de Soete, G.1
  • 7
    • 0002414638 scopus 로고
    • Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables
    • W.S.Desarbo, J. D.Carroll, L. A. Clark, and P. E. Green. Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables. Psychometrika, 49(1):57-78, 1984.
    • (1984) Psychometrika , vol.49 , Issue.1 , pp. 57-78
    • Desarbo, W.S.1    Carroll, J.D.2    Clark, L.A.3    Green, P.E.4
  • 11
    • 21844501258 scopus 로고
    • Weighting and selection of variables for cluster analysis
    • R. Gnanadesikan, J. Kettenring, and S. Tsao. Weighting and selection of variables for cluster analysis. Journal of Classification, 12(1):113-136, 1995.
    • (1995) Journal of Classification , vol.12 , Issue.1 , pp. 113-136
    • Gnanadesikan, R.1    Kettenring, J.2    Tsao, S.3
  • 12
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in k-means clustering
    • P. E. Green, J. Carmone, and J. Kim. A preliminary study of optimal variable weighting in k-means clustering. Journal of Classification, 7(2):271-285, 1990.
    • (1990) Journal of Classification , vol.7 , Issue.2 , pp. 271-285
    • Green, P.E.1    Carmone, J.2    Kim, J.3
  • 13
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithms for clustering large data sets with categorical values
    • Z. Huang. Extensions to the k-means algorithms for clustering large data sets with categorical values. Data Ming and Knowledge Discovery, 2(3):283-304, 1998.
    • (1998) Data Ming and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 17
    • 0033243629 scopus 로고    scopus 로고
    • An algorithm for the fitting of a tree metric according to a weightedleast-squares criterion
    • V. Makarenkov and P. Leclerc. An algorithm for the fitting of a tree metric according to a weightedleast-squares criterion. Journal of Classification, 16(1):3-26, 1999.
    • (1999) Journal of Classification , vol.16 , Issue.1 , pp. 3-26
    • Makarenkov, V.1    Leclerc, P.2
  • 18
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultramet-ric and additive trees and k-means partitioning: Methods and software
    • V. Makarenkov and P. Leclerc. Optimal variable weighting for ultramet-ric and additive trees and k-means partitioning: methods and software. Journal of Classification, 18(2):245-271, 2001.
    • (2001) Journal of Classification , vol.18 , Issue.2 , pp. 245-271
    • Makarenkov, V.1    Leclerc, P.2
  • 19
    • 0002048998 scopus 로고
    • A validation study of a variable weighting algorithm for cluster analysis
    • G. Milligan. A validation study of a variable weighting algorithm for cluster analysis. Journal of Classification, 6(1):53-71, 1989.
    • (1989) Journal of Classification , vol.6 , Issue.1 , pp. 53-71
    • Milligan, G.1
  • 20
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in c-means clustering
    • D. S. Modha and W. S. Spangler. Feature weighting in c-means clustering. Machine Learning, 52(3):217-237, 2003.
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.S.1    Spangler, W.S.2
  • 21
    • 0021202650 scopus 로고
    • K-means-type algorithms: A generalized convergence theorem and characterization of local optimality
    • S. Selim and M. Ismail. K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(1):81-87, 1984.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.1 , pp. 81-87
    • Selim, S.1    Ismail, M.2
  • 22
    • 0036211103 scopus 로고    scopus 로고
    • S-clusters: Capturing subspace correlation in a large data set
    • J. Yang, W. Wang, H. Wang, and P. Yu. S-clusters: capturing subspace correlation in a large data set. In Proc. of ICDE, pages 517-528, 2002.
    • (2002) Proc. of ICDE , pp. 517-528
    • Yang, J.1    Wang, W.2    Wang, H.3    Yu, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.