메뉴 건너뛰기




Volumn 109, Issue 1, 2011, Pages 57-64

Multiple Self Organising Maps (mSOMs) for simultaneous classification and prediction: Illustrated by spoilage in apples using volatile organic profiles

Author keywords

Apple spoilage; Growing SOMs; Multiple SOMs; Simultaneous classification and prediction; Volatile organic compounds

Indexed keywords

VOLATILE ORGANIC COMPOUND;

EID: 80053654720     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.08.001     Document Type: Article
Times cited : (8)

References (39)
  • 1
    • 44849094485 scopus 로고    scopus 로고
    • The self organising maps: background, theories, extensions and applications
    • Yin H. The self organising maps: background, theories, extensions and applications. Stud. Comput. Intell. 2008, 115:715-762.
    • (2008) Stud. Comput. Intell. , vol.115 , pp. 715-762
    • Yin, H.1
  • 2
    • 0030779390 scopus 로고    scopus 로고
    • Counter-propagation neural networks for molecular sequence classification: supervised LVQ and dynamic node allocation
    • Wu C., Chen H.L., Chen S.C. Counter-propagation neural networks for molecular sequence classification: supervised LVQ and dynamic node allocation. Appl. Intell. 1997, 7:27-38.
    • (1997) Appl. Intell. , vol.7 , pp. 27-38
    • Wu, C.1    Chen, H.L.2    Chen, S.C.3
  • 3
    • 0030737774 scopus 로고    scopus 로고
    • Kohonen and counter-propagation artificial neural networks in analytical chemistry
    • Zupan J., Novic M., Ruisánchez I. Kohonen and counter-propagation artificial neural networks in analytical chemistry. Chemom. Intell. Lab. Syst. 1997, 38:1-23.
    • (1997) Chemom. Intell. Lab. Syst. , vol.38 , pp. 1-23
    • Zupan, J.1    Novic, M.2    Ruisánchez, I.3
  • 5
    • 33847327423 scopus 로고    scopus 로고
    • SOMPLS: a supervised self organising map-partial least squares algorithm for multivariate regression problems
    • Melssen W., Üstün B., Buydens L. SOMPLS: a supervised self organising map-partial least squares algorithm for multivariate regression problems. Chemom. Intell. Lab. Syst. 2007, 86:102-120.
    • (2007) Chemom. Intell. Lab. Syst. , vol.86 , pp. 102-120
    • Melssen, W.1    Üstün, B.2    Buydens, L.3
  • 6
    • 0030595799 scopus 로고    scopus 로고
    • Kohonen neural network as a pattern recognition method based on the weight interpretation
    • Song X.H., Hopke P.K. Kohonen neural network as a pattern recognition method based on the weight interpretation. Anal. Chim. Acta 1996, 334:57-66.
    • (1996) Anal. Chim. Acta , vol.334 , pp. 57-66
    • Song, X.H.1    Hopke, P.K.2
  • 7
    • 75649106135 scopus 로고    scopus 로고
    • Supervised self organising maps for classification and determining potentially discriminatory variables: illustrated by application to NMR metabolomic profiling
    • Wongravee K., Lloyd G.R., Silwood C.J.L., Grootveld M., Brereton R.G. Supervised self organising maps for classification and determining potentially discriminatory variables: illustrated by application to NMR metabolomic profiling. Anal. Chem. 2010, 82:629-639.
    • (2010) Anal. Chem. , vol.82 , pp. 629-639
    • Wongravee, K.1    Lloyd, G.R.2    Silwood, C.J.L.3    Grootveld, M.4    Brereton, R.G.5
  • 9
    • 0343017182 scopus 로고
    • Investigation of infrared spectra-structure correlation using Kohonen and counter-propagation neural network
    • Novic M., Zupan J. Investigation of infrared spectra-structure correlation using Kohonen and counter-propagation neural network. J. Chem. Inf. Comput. Sci. 1995, 35:454-466.
    • (1995) J. Chem. Inf. Comput. Sci. , vol.35 , pp. 454-466
    • Novic, M.1    Zupan, J.2
  • 10
    • 69349088267 scopus 로고    scopus 로고
    • Self organising maps for variable selection: application to human saliva analysed by nuclear magnetic resonance spectroscopy to investigate the effect of an oral health product
    • Lloyd G.R., Wongravee K., Silwood C.J.L., Grooveld M., Brereton R.G. Self organising maps for variable selection: application to human saliva analysed by nuclear magnetic resonance spectroscopy to investigate the effect of an oral health product. Chemom. Intell. Lab. Syst. 2009, 98:149-161.
    • (2009) Chemom. Intell. Lab. Syst. , vol.98 , pp. 149-161
    • Lloyd, G.R.1    Wongravee, K.2    Silwood, C.J.L.3    Grooveld, M.4    Brereton, R.G.5
  • 12
    • 77950370185 scopus 로고    scopus 로고
    • Simultaneous classification and feature selection via convex quadratic programming with application to HIV-associated neurocognitive disorder assessment
    • Dunbar M., Murray J.M., Cysique L.A., Brew B.J., Jeyakumar V. Simultaneous classification and feature selection via convex quadratic programming with application to HIV-associated neurocognitive disorder assessment. Eur. J. Oper. Res. 2010, 206:470-478.
    • (2010) Eur. J. Oper. Res. , vol.206 , pp. 470-478
    • Dunbar, M.1    Murray, J.M.2    Cysique, L.A.3    Brew, B.J.4    Jeyakumar, V.5
  • 13
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • Wang L., Zhu J., Zou H. The doubly regularized support vector machine. Stat. Sinica 2006, 16:589-615.
    • (2006) Stat. Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 14
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • Wang L., Zhu J., Zou H. Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 2008, 24:412-419.
    • (2008) Bioinformatics , vol.24 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 15
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • Zhang H.H., Ahn J., Lin X., Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics 2006, 22:88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 17
    • 79251595806 scopus 로고    scopus 로고
    • Self organising maps and support vector regression as aids to coupled chromatography: illustrated by predicting spoilage in apples using volatile organic compounds
    • Sim S.F., Sági-Kiss V., Brereton R.G. Self organising maps and support vector regression as aids to coupled chromatography: illustrated by predicting spoilage in apples using volatile organic compounds. Talanta 2010, 83:1269-1278.
    • (2010) Talanta , vol.83 , pp. 1269-1278
    • Sim, S.F.1    Sági-Kiss, V.2    Brereton, R.G.3
  • 18
    • 0031865594 scopus 로고    scopus 로고
    • Characterisation of apple cider cultivars by chemometric techniques using data from high-performance liquid chromatography and flow-injection analysis
    • Blanco-Gomis D., Herrero-Sánchez I., Mangas Alonso J.J. Characterisation of apple cider cultivars by chemometric techniques using data from high-performance liquid chromatography and flow-injection analysis. Analyst 1998, 123:1187-1191.
    • (1998) Analyst , vol.123 , pp. 1187-1191
    • Blanco-Gomis, D.1    Herrero-Sánchez, I.2    Mangas Alonso, J.J.3
  • 19
    • 23344440785 scopus 로고    scopus 로고
    • Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data
    • Reid L.M., Woodcock T., O'Donnell P.O., Kelly D., Downey G. Differentiation of apple juice samples on the basis of heat treatment and variety using chemometric analysis of MIR and NIR data. Food Res. Int. 2005, 38:1109-1115.
    • (2005) Food Res. Int. , vol.38 , pp. 1109-1115
    • Reid, L.M.1    Woodcock, T.2    O'Donnell, P.O.3    Kelly, D.4    Downey, G.5
  • 20
    • 8444237068 scopus 로고    scopus 로고
    • Preliminary studies for the differentiation of apple juice samples by chemometric analysis of solid-phase microextraction-gas chromatographic data
    • Reid L.M., Woodcock T., O'Donnell P.O., Kelly D., Downey G. Preliminary studies for the differentiation of apple juice samples by chemometric analysis of solid-phase microextraction-gas chromatographic data. J. Agric. Food Chem. 2004, 23:6891-6896.
    • (2004) J. Agric. Food Chem. , vol.23 , pp. 6891-6896
    • Reid, L.M.1    Woodcock, T.2    O'Donnell, P.O.3    Kelly, D.4    Downey, G.5
  • 22
    • 38049087279 scopus 로고    scopus 로고
    • Data mining
    • Morgan Kaufamann, San Francisco
    • Han J., Kamber M. Data mining. Concepts & Techniques 2006, Morgan Kaufamann, San Francisco. second ed.
    • (2006) Concepts & Techniques
    • Han, J.1    Kamber, M.2
  • 23
    • 67349279412 scopus 로고    scopus 로고
    • Input selection and function approximation using the SOM: an application to spectrometric modeling
    • Corona F., Lendasse A. Input selection and function approximation using the SOM: an application to spectrometric modeling. Proc. WSOM Fifth Workshop on Self Organising Maps 2005, 653-660.
    • (2005) Proc. WSOM Fifth Workshop on Self Organising Maps , pp. 653-660
    • Corona, F.1    Lendasse, A.2
  • 24
    • 34447640333 scopus 로고    scopus 로고
    • Quantifying sesquiterpene and oxygenated terpene emissions from live vegetation using solid-phase microextraction fibers
    • Bouvier-Brown N.C., Holzinger R., Palitzsch K., Goldstein A.H. Quantifying sesquiterpene and oxygenated terpene emissions from live vegetation using solid-phase microextraction fibers. J. Chromatogr. A 2007, 1161:113-120.
    • (2007) J. Chromatogr. A , vol.1161 , pp. 113-120
    • Bouvier-Brown, N.C.1    Holzinger, R.2    Palitzsch, K.3    Goldstein, A.H.4
  • 25
    • 34249299023 scopus 로고    scopus 로고
    • An automated method for peak detection and matching in large gas chromatography-mass spectrometry dataset
    • Dixon S.J., Brereton R.G., Soini H.A., Novotny M.V., Penn D.J. An automated method for peak detection and matching in large gas chromatography-mass spectrometry dataset. J. Chemom. 2006, 20:325-340.
    • (2006) J. Chemom. , vol.20 , pp. 325-340
    • Dixon, S.J.1    Brereton, R.G.2    Soini, H.A.3    Novotny, M.V.4    Penn, D.J.5
  • 27
    • 0033103381 scopus 로고    scopus 로고
    • QSAR study of the tropospheric degradation of organic compounds
    • Gramatica P., Consonni V., Todeschini R. QSAR study of the tropospheric degradation of organic compounds. Chemosphere 1999, 38:1371-1378.
    • (1999) Chemosphere , vol.38 , pp. 1371-1378
    • Gramatica, P.1    Consonni, V.2    Todeschini, R.3
  • 28
    • 67949091125 scopus 로고    scopus 로고
    • Pattern recognition of inductively coupled plasma atomic emission spectroscopy of human scalp hair for discriminating between healthy and Hepatitis C patients
    • Lloyd G.R., Sajjad A., Wasim M., Brereton R.G. Pattern recognition of inductively coupled plasma atomic emission spectroscopy of human scalp hair for discriminating between healthy and Hepatitis C patients. Anal. Chim. Acta 2009, 649:33-42.
    • (2009) Anal. Chim. Acta , vol.649 , pp. 33-42
    • Lloyd, G.R.1    Sajjad, A.2    Wasim, M.3    Brereton, R.G.4
  • 31
    • 47749084337 scopus 로고    scopus 로고
    • Self organising maps for distinguishing polymer groups using thermal response curves obtained by dynamic mechanical analysis
    • Lloyd G.R., Brereton R.G., Duncan J.C. Self organising maps for distinguishing polymer groups using thermal response curves obtained by dynamic mechanical analysis. Analyst 2008, 133:1046-1059.
    • (2008) Analyst , vol.133 , pp. 1046-1059
    • Lloyd, G.R.1    Brereton, R.G.2    Duncan, J.C.3
  • 32
    • 33645242166 scopus 로고    scopus 로고
    • Kohonen artificial neural network and counter propagation network in molecular structure-toxicity studies
    • Vracko M. Kohonen artificial neural network and counter propagation network in molecular structure-toxicity studies. Curr. Comput. Aided Drug Des. 2005, 1:73-78.
    • (2005) Curr. Comput. Aided Drug Des. , vol.1 , pp. 73-78
    • Vracko, M.1
  • 33
    • 0032639918 scopus 로고    scopus 로고
    • Multisource data fusion with multiple self-organising map
    • Wan W., Fraser D. Multisource data fusion with multiple self-organising map. IEEE Trans. Geosci. Remote Sens. 1999, 37:1345-1349.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 1345-1349
    • Wan, W.1    Fraser, D.2
  • 34
    • 0343581269 scopus 로고    scopus 로고
    • Multiple self organising maps: a hybrid learning scheme
    • Cervera E., del Pobil A.P. Multiple self organising maps: a hybrid learning scheme. Neurocomputing 1997, 16:309-318.
    • (1997) Neurocomputing , vol.16 , pp. 309-318
    • Cervera, E.1    del Pobil, A.P.2
  • 35
    • 70350422293 scopus 로고    scopus 로고
    • Review of the self organising map approach in water resources
    • Céréghino R., Park Y.S. Review of the self organising map approach in water resources. Environ. Modell. Softw. 2009, 24:945-947.
    • (2009) Environ. Modell. Softw. , vol.24 , pp. 945-947
    • Céréghino, R.1    Park, Y.S.2
  • 36
    • 77952876529 scopus 로고    scopus 로고
    • Cluster identification and separation in the growing self organising map: application in protein sequence classification
    • Ahmad N., Alahakoon D., Chau R. Cluster identification and separation in the growing self organising map: application in protein sequence classification. Neural Comput. Applic. 2010, 19:531-542.
    • (2010) Neural Comput. Applic. , vol.19 , pp. 531-542
    • Ahmad, N.1    Alahakoon, D.2    Chau, R.3
  • 38
    • 33746260071 scopus 로고    scopus 로고
    • Externally growing self organising maps and its application to e-mail database visualization and exploration
    • Nürnberger A., Detyniecki M. Externally growing self organising maps and its application to e-mail database visualization and exploration. J. Appl. Soft Comput. 2006, 6:357-371.
    • (2006) J. Appl. Soft Comput. , vol.6 , pp. 357-371
    • Nürnberger, A.1    Detyniecki, M.2
  • 39
    • 33751417111 scopus 로고    scopus 로고
    • Consequences of sample sizes, variable selection, model validation and optimization for predicting classification ability from analytical data
    • Brereton R.G. Consequences of sample sizes, variable selection, model validation and optimization for predicting classification ability from analytical data. Trends Anal. Chem. 2006, 25:1103-1111.
    • (2006) Trends Anal. Chem. , vol.25 , pp. 1103-1111
    • Brereton, R.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.