-
1
-
-
0035442469
-
Extended PLS approach for enhanced condition monitoring of industrial processes
-
Kruger, U.; Chen, Q.; Sandoz, D. J.; McFarlane, R. C. Extended PLS approach for enhanced condition monitoring of industrial processes AIChE J. 2001, 47, 2076-2091
-
(2001)
AIChE J.
, vol.47
, pp. 2076-2091
-
-
Kruger, U.1
Chen, Q.2
Sandoz, D.J.3
McFarlane, R.C.4
-
2
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
3
-
-
2342531746
-
Synthesis of T 2 and Q statistics for process monitoring
-
Chen, Q.; Kruger, U.; Meronk, M.; Leung, A. Y. T. Synthesis of T 2 and Q statistics for process monitoring Control Eng. Pract. 2004, 12, 745-755
-
(2004)
Control Eng. Pract.
, vol.12
, pp. 745-755
-
-
Chen, Q.1
Kruger, U.2
Meronk, M.3
Leung, A.Y.T.4
-
4
-
-
18244371404
-
On-line monitoring of a sugar crystallization process
-
Simoglou, A.; Georgieva, P; Martin, E. B.; Morris, A. J.; Feyo de Azevedo, S. On-line monitoring of a sugar crystallization process Comput. Chem. Eng. 2005, 29, 1411-1422
-
(2005)
Comput. Chem. Eng.
, vol.29
, pp. 1411-1422
-
-
Simoglou, A.1
Georgieva, P.2
Martin, E.B.3
Morris, A.J.4
Feyo De Azevedo, S.5
-
5
-
-
57049177632
-
Improved nonlinear fault detection technique and statistical analysis
-
Zhang, Y. W.; Qin, S. J. Improved nonlinear fault detection technique and statistical analysis AIChE J. 2008, 54, 3207-3220
-
(2008)
AIChE J.
, vol.54
, pp. 3207-3220
-
-
Zhang, Y.W.1
Qin, S.J.2
-
6
-
-
54949117106
-
Diagnosis of process faults in chemical systems using a local partial least squares approach
-
Kruger, U.; Dimitriadis, G. Diagnosis of process faults in chemical systems using a local partial least squares approach AIChE J. 2008, 54, 2581-2596
-
(2008)
AIChE J.
, vol.54
, pp. 2581-2596
-
-
Kruger, U.1
Dimitriadis, G.2
-
7
-
-
36749052831
-
Monitoring a complex refining process using multivariate statistics
-
AlGhazzawi, A.; Lennox, B. Monitoring a complex refining process using multivariate statistics Control Eng. Pract. 2008, 16, 294-307
-
(2008)
Control Eng. Pract.
, vol.16
, pp. 294-307
-
-
Alghazzawi, A.1
Lennox, B.2
-
8
-
-
44349144443
-
Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data
-
Zhao, C. H.; Wang, F. L.; Mao, Z. Y.; Lu, N. Y.; Jia, M. X. Adaptive monitoring based on independent component analysis for multiphase batch processes with limited modeling data Ind. Eng. Chem. Res. 2008, 47, 3104-3113
-
(2008)
Ind. Eng. Chem. Res.
, vol.47
, pp. 3104-3113
-
-
Zhao, C.H.1
Wang, F.L.2
Mao, Z.Y.3
Lu, N.Y.4
Jia, M.X.5
-
9
-
-
60249095677
-
Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
-
Chen, T.; Sun, Y. Probabilistic contribution analysis for statistical process monitoring: A missing variable approach Control Eng. Pract. 2009, 17, 469-477
-
(2009)
Control Eng. Pract.
, vol.17
, pp. 469-477
-
-
Chen, T.1
Sun, Y.2
-
10
-
-
58149308461
-
Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction
-
Zhao, C. H.; Wang, F. L.; Gao, F. R. Improved calibration investigation using phase-wise local and cumulative quality interpretation and prediction Chemom. Intell. Lab. Sys. 2009, 95, 107-121
-
(2009)
Chemom. Intell. Lab. Sys.
, vol.95
, pp. 107-121
-
-
Zhao, C.H.1
Wang, F.L.2
Gao, F.R.3
-
11
-
-
0041530045
-
Process monitoring based on probabilistic PCA
-
Kim, D.; Lee, I. B. Process monitoring based on probabilistic PCA Chemom. Intell. Lab. Syst. 2003, 67, 109-123
-
(2003)
Chemom. Intell. Lab. Syst.
, vol.67
, pp. 109-123
-
-
Kim, D.1
Lee, I.B.2
-
12
-
-
0347963789
-
The generative topographic mapping
-
Bishop, C. M.; Svensen, M.; Williams, C. K. I. The generative topographic mapping Neural Comput. 1998, 10, 215-234
-
(1998)
Neural Comput.
, vol.10
, pp. 215-234
-
-
Bishop, C.M.1
Svensen, M.2
Williams, C.K.I.3
-
13
-
-
60549112199
-
A method for extension of generative topographic mapping for fuzzy clustering
-
Bose, I.; Chen, X. A method for extension of generative topographic mapping for fuzzy clustering J. Am. Soc., Inf. Sci. Technol. 2009, 60, 363-371
-
(2009)
J. Am. Soc., Inf. Sci. Technol.
, vol.60
, pp. 363-371
-
-
Bose, I.1
Chen, X.2
-
14
-
-
77649153368
-
A nonlinear probabilistic method for process monitoring
-
Ge, Z. Q.; Song, Z. H. A nonlinear probabilistic method for process monitoring Ind. Eng. Chem. Res. 2009, 49, 1770-1778
-
(2009)
Ind. Eng. Chem. Res.
, vol.49
, pp. 1770-1778
-
-
Ge, Z.Q.1
Song, Z.H.2
-
15
-
-
27844605876
-
Probabilistic nonlinear principal component analysis with Gaussian process latent variable models
-
Lawrence, N. D. Probabilistic nonlinear principal component analysis with Gaussian process latent variable models J. Machine Learn. Res. 2005, 6, 1783-1816
-
(2005)
J. Machine Learn. Res.
, vol.6
, pp. 1783-1816
-
-
Lawrence, N.D.1
-
16
-
-
0033556788
-
Mixtures of probabilistic principal component analysis
-
Tipping, M. E.; Bishop, C. M. Mixtures of probabilistic principal component analysis Neural Comput. 1999, 11, 443-482
-
(1999)
Neural Comput.
, vol.11
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
18
-
-
34247508683
-
Gaussian process regression for multivariate spectroscopic calibration
-
Chen, T.; Morris, A. J.; Martin, E. Gaussian process regression for multivariate spectroscopic calibration Chemom. Intell. Lab. Syst. 2007, 87, 59-71
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.87
, pp. 59-71
-
-
Chen, T.1
Morris, A.J.2
Martin, E.3
-
19
-
-
61349165676
-
Multiple model soft sensor based on affinity propagation, Gaussian process, and Bayesian committee machine
-
Li, X. L.; Su, H. Y.; Chu, J. Multiple model soft sensor based on affinity propagation, Gaussian process, and Bayesian committee machine Chin. J. Chem. Eng. 2009, 17, 95-99
-
(2009)
Chin. J. Chem. Eng.
, vol.17
, pp. 95-99
-
-
Li, X.L.1
Su, H.Y.2
Chu, J.3
-
20
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
Møller, M. F. A scaled conjugate gradient algorithm for fast supervised learning Neural Networks 1993, 6, 525-533
-
(1993)
Neural Networks
, vol.6
, pp. 525-533
-
-
Møller, M.F.1
-
21
-
-
80053225881
-
Fast sparse Gaussian process methods: The informative vector machine
-
Lawrence, N. D.; Seeger, M.; Herbrich, R. Fast sparse Gaussian process methods: The informative vector machine Adv. Neural Inf. Process. Syst. 2003, 15, 625-632
-
(2003)
Adv. Neural Inf. Process. Syst.
, vol.15
, pp. 625-632
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
22
-
-
0942266514
-
Support vector domain description
-
Tax, D. M. J.; Duin, R. P. W. Support vector domain description Machine Learn. 2004, 54, 45-66
-
(2004)
Machine Learn.
, vol.54
, pp. 45-66
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
24
-
-
0037084628
-
Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
-
Kano, M.; Nagao, K.; Hasebe, H.; Hashimoto, I.; Ohno, H.; Strauss, R.; Bakshi, B. R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem Comput. Chem. Eng. 2002, 26, 161-174
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 161-174
-
-
Kano, M.1
Nagao, K.2
Hasebe, H.3
Hashimoto, I.4
Ohno, H.5
Strauss, R.6
Bakshi, B.R.7
-
25
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
|