-
1
-
-
0015302555
-
Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells
-
Robberson D.L., Kasamatsu H., Vinograd J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc. Natl. Acad. Sci. U.S.A. 1972, 69:737-741.
-
(1972)
Proc. Natl. Acad. Sci. U.S.A.
, vol.69
, pp. 737-741
-
-
Robberson, D.L.1
Kasamatsu, H.2
Vinograd, J.3
-
2
-
-
0019978703
-
Replication of animal mitochondrial DNA
-
Clayton D.A. Replication of animal mitochondrial DNA. Cell 1982, 28:693-705.
-
(1982)
Cell
, vol.28
, pp. 693-705
-
-
Clayton, D.A.1
-
3
-
-
0034598918
-
Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA
-
Holt I.J., Lorimer H.E., Jacobs H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100:515-524.
-
(2000)
Cell
, vol.100
, pp. 515-524
-
-
Holt, I.J.1
Lorimer, H.E.2
Jacobs, H.T.3
-
4
-
-
0037112343
-
Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication
-
Yang M.Y., Bowmaker M., Reyes A., Vergani L., Angeli P., Gringeri E., Jacobs H.T., Holt I.J. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 2002, 111:495-505.
-
(2002)
Cell
, vol.111
, pp. 495-505
-
-
Yang, M.Y.1
Bowmaker, M.2
Reyes, A.3
Vergani, L.4
Angeli, P.5
Gringeri, E.6
Jacobs, H.T.7
Holt, I.J.8
-
5
-
-
20444428352
-
A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA
-
Yasukawa T., Yang M.Y., Jacobs H.T., Holt I.J. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol. Cell 2005, 18:651-662.
-
(2005)
Mol. Cell
, vol.18
, pp. 651-662
-
-
Yasukawa, T.1
Yang, M.Y.2
Jacobs, H.T.3
Holt, I.J.4
-
6
-
-
33751088000
-
Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand
-
Yasukawa T., Reyes A., Cluett T.J., Yang M.Y., Bowmaker M., Jacobs H.T., Holt I.J. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006, 25:5358-5371.
-
(2006)
EMBO J.
, vol.25
, pp. 5358-5371
-
-
Yasukawa, T.1
Reyes, A.2
Cluett, T.J.3
Yang, M.Y.4
Bowmaker, M.5
Jacobs, H.T.6
Holt, I.J.7
-
7
-
-
77950473394
-
Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid
-
Pohjoismäki J.L.O., Holmes J.B., Wood S.R., Yang M.Y., Yasukawa T., Reyes A., Bailey L.J., Cluett T.J., Goffart S., Willcox S., Rigby R.E., Jackson A.P., Spelbrink J.N., Griffith J.D., Crouch R.J., Jacobs H.T., Holt I.J. Mammalian mitochondrial DNA replication intermediates are essentially duplex but contain extensive tracts of RNA/DNA hybrid. J. Mol. Biol. 2010, 397:1144-1155.
-
(2010)
J. Mol. Biol.
, vol.397
, pp. 1144-1155
-
-
Pohjoismäki, J.L.O.1
Holmes, J.B.2
Wood, S.R.3
Yang, M.Y.4
Yasukawa, T.5
Reyes, A.6
Bailey, L.J.7
Cluett, T.J.8
Goffart, S.9
Willcox, S.10
Rigby, R.E.11
Jackson, A.P.12
Spelbrink, J.N.13
Griffith, J.D.14
Crouch, R.J.15
Jacobs, H.T.16
Holt, I.J.17
-
8
-
-
26944500840
-
Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism
-
Brown T.A., Cecconi C., Tkachuk A.N., Bustamante C., Clayton D.A. Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev. 2005, 19:2466-2476.
-
(2005)
Genes Dev.
, vol.19
, pp. 2466-2476
-
-
Brown, T.A.1
Cecconi, C.2
Tkachuk, A.N.3
Bustamante, C.4
Clayton, D.A.5
-
9
-
-
69249158083
-
Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks
-
Pohjoismäki J.L.O., Goffart S., Tyynismaa H., Willcox S., Ide T., Kang D., Suomalainen A., Karhunen P.J., Griffith J.D., Holt I.J., Jacobs H.T. Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J. Biol. Chem. 2009, 284:21446-21457.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 21446-21457
-
-
Pohjoismäki, J.L.O.1
Goffart, S.2
Tyynismaa, H.3
Willcox, S.4
Ide, T.5
Kang, D.6
Suomalainen, A.7
Karhunen, P.J.8
Griffith, J.D.9
Holt, I.J.10
Jacobs, H.T.11
-
10
-
-
1642545486
-
The protein components and mechanism of eukaryotic Okazaki fragment maturation
-
Kao H.I., Bambara R.A. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit. Rev. Biochem. Mol. Biol. 2003, 38:433-452.
-
(2003)
Crit. Rev. Biochem. Mol. Biol.
, vol.38
, pp. 433-452
-
-
Kao, H.I.1
Bambara, R.A.2
-
11
-
-
61349102407
-
Ribonuclease H: the enzymes in eukaryotes
-
Cerritelli S.M., Crouch R.J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009, 276:1494-1505.
-
(2009)
FEBS J.
, vol.276
, pp. 1494-1505
-
-
Cerritelli, S.M.1
Crouch, R.J.2
-
12
-
-
77949557756
-
Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes
-
Kang Y.H., Lee C.H., Seo Y.S. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 2010, 45:71-96.
-
(2010)
Crit. Rev. Biochem. Mol. Biol.
, vol.45
, pp. 71-96
-
-
Kang, Y.H.1
Lee, C.H.2
Seo, Y.S.3
-
13
-
-
0034734323
-
DNA ligases in the repair and replication of DNA
-
Timson D.J., Singleton M.R., Wigley D.B. DNA ligases in the repair and replication of DNA. Mutat. Res. 2000, 460:301-318.
-
(2000)
Mutat. Res.
, vol.460
, pp. 301-318
-
-
Timson, D.J.1
Singleton, M.R.2
Wigley, D.B.3
-
14
-
-
0345354684
-
Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice
-
Cerritelli S.M., Frolova E.G., Feng C., Grinberg A., Love P.E., Crouch R.J. Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice. Mol. Cell 2003, 11:807-815.
-
(2003)
Mol. Cell
, vol.11
, pp. 807-815
-
-
Cerritelli, S.M.1
Frolova, E.G.2
Feng, C.3
Grinberg, A.4
Love, P.E.5
Crouch, R.J.6
-
15
-
-
49449102611
-
Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria
-
Liu P., Qian L., Sung J.S., de Souza-Pinto N.C., Zheng L., Bogenhagen D.F., Bohr V.A., Wilson D.M., Shen B., Demple B. Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol. Cell. Biol. 2008, 28:4975-4987.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4975-4987
-
-
Liu, P.1
Qian, L.2
Sung, J.S.3
de Souza-Pinto, N.C.4
Zheng, L.5
Bogenhagen, D.F.6
Bohr, V.A.7
Wilson, D.M.8
Shen, B.9
Demple, B.10
-
16
-
-
55049112210
-
Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates
-
Zheng L., Zhou M., Guo Z., Lu H., Qian L., Dai H., Qiu J., Yakubovskaya E., Bogenhagen D.F., Demple B., Shen B. Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol. Cell 2008, 32:325-336.
-
(2008)
Mol. Cell
, vol.32
, pp. 325-336
-
-
Zheng, L.1
Zhou, M.2
Guo, Z.3
Lu, H.4
Qian, L.5
Dai, H.6
Qiu, J.7
Yakubovskaya, E.8
Bogenhagen, D.F.9
Demple, B.10
Shen, B.11
-
17
-
-
67651215883
-
Human Dna2 is a nuclear and mitochondrial DNA maintenance protein
-
Duxin J.P., Dao B., Martinsson P., Rajala N., Guittat L., Campbell J.L., Spelbrink J.N., Stewart S.A. Human Dna2 is a nuclear and mitochondrial DNA maintenance protein. Mol. Cell. Biol. 2009, 29:4274-4282.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 4274-4282
-
-
Duxin, J.P.1
Dao, B.2
Martinsson, P.3
Rajala, N.4
Guittat, L.5
Campbell, J.L.6
Spelbrink, J.N.7
Stewart, S.A.8
-
18
-
-
0032960864
-
The human DNA ligase III gene encodes nuclear and mitochondrial proteins
-
Lakshmipathy U., Campbell C. The human DNA ligase III gene encodes nuclear and mitochondrial proteins. Mol. Cell. Biol. 1999, 19:3869-3876.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 3869-3876
-
-
Lakshmipathy, U.1
Campbell, C.2
-
19
-
-
0033533721
-
The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I
-
Willer M., Rainey M., Pullen T., Stirling C.J. The yeast CDC9 gene encodes both a nuclear and a mitochondrial form of DNA ligase I. Curr. Biol. 1999, 9:1085-1094.
-
(1999)
Curr. Biol.
, vol.9
, pp. 1085-1094
-
-
Willer, M.1
Rainey, M.2
Pullen, T.3
Stirling, C.J.4
-
20
-
-
33745808015
-
An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase 1 in Arabidopsis thaliana
-
Sunderland P.A., West C.E., Waterworth W.M., Bray C.M. An evolutionarily conserved translation initiation mechanism regulates nuclear or mitochondrial targeting of DNA ligase 1 in Arabidopsis thaliana. Plant J. 2006, 47:356-367.
-
(2006)
Plant J.
, vol.47
, pp. 356-367
-
-
Sunderland, P.A.1
West, C.E.2
Waterworth, W.M.3
Bray, C.M.4
-
21
-
-
50649116450
-
Eukaryotic DNA ligases: structural and functional insights
-
Ellenberger T., Tomkinson A.E. Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 2008, 77:313-338.
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 313-338
-
-
Ellenberger, T.1
Tomkinson, A.E.2
-
22
-
-
0035253750
-
Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity
-
Lakshmipathy U., Campbell C. Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity. Nucleic Acids Res. 2001, 29:668-676.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 668-676
-
-
Lakshmipathy, U.1
Campbell, C.2
-
23
-
-
33846957403
-
A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability
-
De A., Campbell C. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability. Biochem. J. 2007, 402:175-186.
-
(2007)
Biochem. J.
, vol.402
, pp. 175-186
-
-
De, A.1
Campbell, C.2
-
24
-
-
77953717381
-
Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation
-
Ruhanen H., Borrie S., Szabadkai G., Tyynismaa H., Jones A.W., Kang D., Taanman J.W., Yasukawa T. Mitochondrial single-stranded DNA binding protein is required for maintenance of mitochondrial DNA and 7S DNA but is not required for mitochondrial nucleoid organisation. Biochim. Biophys. Acta 2010, 1803:931-939.
-
(2010)
Biochim. Biophys. Acta
, vol.1803
, pp. 931-939
-
-
Ruhanen, H.1
Borrie, S.2
Szabadkai, G.3
Tyynismaa, H.4
Jones, A.W.5
Kang, D.6
Taanman, J.W.7
Yasukawa, T.8
-
25
-
-
34249666089
-
Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication
-
Muylaert I., Elias P. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. J. Biol. Chem. 2007, 282:10865-10872.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 10865-10872
-
-
Muylaert, I.1
Elias, P.2
-
26
-
-
0036566781
-
Release of replication termination controls mitochondrial DNA copy number after depletion with 2',3'-dideoxycytidine
-
Brown T.A., Clayton D.A. Release of replication termination controls mitochondrial DNA copy number after depletion with 2',3'-dideoxycytidine. Nucleic Acids Res. 2002, 30:2004-2010.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 2004-2010
-
-
Brown, T.A.1
Clayton, D.A.2
-
27
-
-
0023646792
-
The localization of replication origins on ARS plasmids in S. cerevisiae
-
Brewer B.J., Fangman W.L. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 1987, 51:463-471.
-
(1987)
Cell
, vol.51
, pp. 463-471
-
-
Brewer, B.J.1
Fangman, W.L.2
-
28
-
-
0024291357
-
A replication fork barrier at the 3' end of yeast ribosomal RNA genes
-
Brewer B.J., Fangman W.L. A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell 1988, 55:637-643.
-
(1988)
Cell
, vol.55
, pp. 637-643
-
-
Brewer, B.J.1
Fangman, W.L.2
-
29
-
-
0347695996
-
Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone
-
Bowmaker M., Yang M.Y., Yasukawa T., Reyes A., Jacobs H.T., Huberman J.A., Holt I.J. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J. Biol. Chem. 2003, 278:50961-50969.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 50961-50969
-
-
Bowmaker, M.1
Yang, M.Y.2
Yasukawa, T.3
Reyes, A.4
Jacobs, H.T.5
Huberman, J.A.6
Holt, I.J.7
-
30
-
-
0016589019
-
Specificity of the S1 nuclease from Aspergillus oryzae
-
Wiegand R.C., Godson G.N., Radding C.M. Specificity of the S1 nuclease from Aspergillus oryzae. J. Biol. Chem. 1975, 250:8848-8855.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 8848-8855
-
-
Wiegand, R.C.1
Godson, G.N.2
Radding, C.M.3
-
31
-
-
79952368682
-
DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair
-
Gao Y., Katyal S., Lee Y., Zhao J., Rehg J.E., Russell H.R., McKinnon P.J. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair. Nature 2011, 471:240-244.
-
(2011)
Nature
, vol.471
, pp. 240-244
-
-
Gao, Y.1
Katyal, S.2
Lee, Y.3
Zhao, J.4
Rehg, J.E.5
Russell, H.R.6
McKinnon, P.J.7
-
32
-
-
79952426030
-
Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair
-
Simsek D., Furda A., Gao Y., Artus J., Brunet E., Hadjantonakis A.K., Van Houten B., Shuman S., McKinnon P.J., Jasin M. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair. Nature 2011, 471:245-248.
-
(2011)
Nature
, vol.471
, pp. 245-248
-
-
Simsek, D.1
Furda, A.2
Gao, Y.3
Artus, J.4
Brunet, E.5
Hadjantonakis, A.K.6
Van Houten, B.7
Shuman, S.8
McKinnon, P.J.9
Jasin, M.10
-
33
-
-
2342429459
-
DNA polymerase gamma, the mitochondrial replicase
-
Kaguni L.S. DNA polymerase gamma, the mitochondrial replicase. Annu. Rev. Biochem. 2004, 73:293-320.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 293-320
-
-
Kaguni, L.S.1
-
34
-
-
33845883545
-
Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate
-
Lima W.F., Rose J.B., Nichols J.G., Wu H., Migawa M.T., Wyrzykiewicz T.K., Siwkowski A.M., Crooke S.T. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol. Pharmacol. 2007, 71:83-91.
-
(2007)
Mol. Pharmacol.
, vol.71
, pp. 83-91
-
-
Lima, W.F.1
Rose, J.B.2
Nichols, J.G.3
Wu, H.4
Migawa, M.T.5
Wyrzykiewicz, T.K.6
Siwkowski, A.M.7
Crooke, S.T.8
-
35
-
-
77749334630
-
Yeast exonuclease 5 is essential for mitochondrial genome maintenance
-
Burgers P.M., Stith C.M., Yoder B.L., Sparks J.L. Yeast exonuclease 5 is essential for mitochondrial genome maintenance. Mol. Cell. Biol. 2010, 30:1457-1466.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 1457-1466
-
-
Burgers, P.M.1
Stith, C.M.2
Yoder, B.L.3
Sparks, J.L.4
|