메뉴 건너뛰기




Volumn 36, Issue 10, 2011, Pages 532-540

Biochemistry and cell signaling taught by bacterial effectors

Author keywords

[No Author keywords available]

Indexed keywords

ACYLTRANSFERASE; CIF PROTEIN; DRRA PROTEIN; GUANOSINE TRIPHOSPHATASE; IBPA PROTEIN; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; IPAH PROTEIN; LYASE; MITOGEN ACTIVATED PROTEIN KINASE; MITOGEN ACTIVATED PROTEIN KINASE KINASE; NEDD8 PROTEIN; OSPF PRTOEIN; RAB PROTEIN; SIDM PROTEIN; TRANSFERASE; UBIQUITIN; UBIQUITIN PROTEIN LIGASE; UNCLASSIFIED DRUG; VOPS PROTEIN; YOPJ PROTEIN;

EID: 80053337001     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2011.07.003     Document Type: Review
Times cited : (41)

References (85)
  • 1
    • 33845249292 scopus 로고    scopus 로고
    • Protein delivery into eukaryotic cells by type III secretion machines
    • Galan J.E., Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006, 444:567-573.
    • (2006) Nature , vol.444 , pp. 567-573
    • Galan, J.E.1    Wolf-Watz, H.2
  • 2
    • 77957116092 scopus 로고    scopus 로고
    • Type IV secretion systems: versatility and diversity in function
    • Wallden K., et al. Type IV secretion systems: versatility and diversity in function. Cell Microbiol. 2010, 12:1203-1212.
    • (2010) Cell Microbiol. , vol.12 , pp. 1203-1212
    • Wallden, K.1
  • 3
    • 35348992048 scopus 로고    scopus 로고
    • Manipulation of host-cell pathways by bacterial pathogens
    • Bhavsar A.P., et al. Manipulation of host-cell pathways by bacterial pathogens. Nature 2007, 449:827-834.
    • (2007) Nature , vol.449 , pp. 827-834
    • Bhavsar, A.P.1
  • 4
    • 70350674402 scopus 로고    scopus 로고
    • How microbes utilize host ubiquitination
    • Spallek T., et al. How microbes utilize host ubiquitination. Cell Microbiol. 2009, 11:1425-1434.
    • (2009) Cell Microbiol. , vol.11 , pp. 1425-1434
    • Spallek, T.1
  • 5
    • 33846958783 scopus 로고    scopus 로고
    • An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses
    • Arbibe L., et al. An injected bacterial effector targets chromatin access for transcription factor NF-kappaB to alter transcription of host genes involved in immune responses. Nat. Immunol. 2007, 8:47-56.
    • (2007) Nat. Immunol. , vol.8 , pp. 47-56
    • Arbibe, L.1
  • 6
    • 33847269135 scopus 로고    scopus 로고
    • Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation
    • Kramer R.W., et al. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLoS Pathog. 2007, 3:e21.
    • (2007) PLoS Pathog. , vol.3
    • Kramer, R.W.1
  • 7
    • 33847154642 scopus 로고    scopus 로고
    • The phosphothreonine lyase activity of a bacterial type III effector family
    • Li H., et al. The phosphothreonine lyase activity of a bacterial type III effector family. Science 2007, 315:1000-1003.
    • (2007) Science , vol.315 , pp. 1000-1003
    • Li, H.1
  • 8
    • 39849099509 scopus 로고    scopus 로고
    • SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases
    • Mazurkiewicz P., et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. Mol. Microbiol. 2008, 67:1371-1383.
    • (2008) Mol. Microbiol. , vol.67 , pp. 1371-1383
    • Mazurkiewicz, P.1
  • 9
    • 62849120767 scopus 로고    scopus 로고
    • Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases
    • Brennan D.F., Barford D. Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases. Trends Biochem. Sci. 2009, 34:108-114.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 108-114
    • Brennan, D.F.1    Barford, D.2
  • 10
    • 36749011295 scopus 로고    scopus 로고
    • Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase
    • Zhu Y., et al. Structural insights into the enzymatic mechanism of the pathogenic MAPK phosphothreonine lyase. Mol. Cell 2007, 28:899-913.
    • (2007) Mol. Cell , vol.28 , pp. 899-913
    • Zhu, Y.1
  • 11
    • 35848941716 scopus 로고    scopus 로고
    • Lantibiotics: peptides of diverse structure and function
    • Willey J.M., van der Donk W.A. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 2007, 61:477-501.
    • (2007) Annu. Rev. Microbiol. , vol.61 , pp. 477-501
    • Willey, J.M.1    van der Donk, W.A.2
  • 12
    • 79952097307 scopus 로고    scopus 로고
    • Mechanistic studies of Ser/Thr dehydration catalyzed by a member of the LanL lanthionine synthetase family
    • Goto Y., et al. Mechanistic studies of Ser/Thr dehydration catalyzed by a member of the LanL lanthionine synthetase family. Biochemistry 2011, 50:891-898.
    • (2011) Biochemistry , vol.50 , pp. 891-898
    • Goto, Y.1
  • 13
    • 0037023734 scopus 로고    scopus 로고
    • Structure and function of threonine synthase from yeast
    • Garrido-Franco M., et al. Structure and function of threonine synthase from yeast. J. Biol. Chem. 2002, 277:12396-12405.
    • (2002) J. Biol. Chem. , vol.277 , pp. 12396-12405
    • Garrido-Franco, M.1
  • 14
    • 33750035176 scopus 로고    scopus 로고
    • A threonine synthase homolog from a mammalian genome
    • Donini S., et al. A threonine synthase homolog from a mammalian genome. Biochem. Biophys. Res. Commun. 2006, 350:922-928.
    • (2006) Biochem. Biophys. Res. Commun. , vol.350 , pp. 922-928
    • Donini, S.1
  • 15
    • 0036162971 scopus 로고    scopus 로고
    • Function of the Yersinia effector YopJ
    • Orth K. Function of the Yersinia effector YopJ. Curr. Opin. Microbiol. 2002, 5:38-43.
    • (2002) Curr. Opin. Microbiol. , vol.5 , pp. 38-43
    • Orth, K.1
  • 16
    • 33845480946 scopus 로고    scopus 로고
    • Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling
    • Mittal R., et al. Acetylation of MEK2 and I kappa B kinase (IKK) activation loop residues by YopJ inhibits signaling. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18574-18579.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18574-18579
    • Mittal, R.1
  • 17
    • 33744457909 scopus 로고    scopus 로고
    • Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation
    • Mukherjee S., et al. Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 2006, 312:1211-1214.
    • (2006) Science , vol.312 , pp. 1211-1214
    • Mukherjee, S.1
  • 18
    • 41849151481 scopus 로고    scopus 로고
    • Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade
    • Jones R.M., et al. Salmonella AvrA coordinates suppression of host immune and apoptotic defenses via JNK pathway blockade. Cell Host Microbe 2008, 3:233-244.
    • (2008) Cell Host Microbe , vol.3 , pp. 233-244
    • Jones, R.M.1
  • 19
    • 70349668298 scopus 로고    scopus 로고
    • Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA
    • Du F., Galan J.E. Selective inhibition of type III secretion activated signaling by the Salmonella effector AvrA. PLoS Pathog. 2009, 5:e1000595.
    • (2009) PLoS Pathog. , vol.5
    • Du, F.1    Galan, J.E.2
  • 20
    • 33748771725 scopus 로고    scopus 로고
    • AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway
    • Fehr D., et al. AopP, a type III effector protein of Aeromonas salmonicida, inhibits the NF-kappaB signalling pathway. Microbiology 2006, 152:2809-2818.
    • (2006) Microbiology , vol.152 , pp. 2809-2818
    • Fehr, D.1
  • 21
    • 36348936280 scopus 로고    scopus 로고
    • VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases
    • Trosky J.E., et al. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J. Biol. Chem. 2007, 282:34299-34305.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34299-34305
    • Trosky, J.E.1
  • 22
    • 9744250218 scopus 로고    scopus 로고
    • The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol
    • Johnson C.M., et al. The serine acetyltransferase reaction: acetyl transfer from an acylpantothenyl donor to an alcohol. Arch. Biochem. Biophys. 2005, 433:85-95.
    • (2005) Arch. Biochem. Biophys. , vol.433 , pp. 85-95
    • Johnson, C.M.1
  • 23
    • 79251517062 scopus 로고    scopus 로고
    • Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis
    • Tasset C., et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog. 2010, 6:e1001202.
    • (2010) PLoS Pathog. , vol.6
    • Tasset, C.1
  • 24
    • 34247869836 scopus 로고    scopus 로고
    • A newly discovered post-translational modification - the acetylation of serine and threonine residues
    • Mukherjee S., et al. A newly discovered post-translational modification - the acetylation of serine and threonine residues. Trends Biochem. Sci. 2007, 32:210-216.
    • (2007) Trends Biochem. Sci. , vol.32 , pp. 210-216
    • Mukherjee, S.1
  • 25
    • 77953782586 scopus 로고    scopus 로고
    • The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate
    • Mittal R., et al. The acetyltransferase activity of the bacterial toxin YopJ of Yersinia is activated by eukaryotic host cell inositol hexakisphosphate. J. Biol. Chem. 2010, 285:19927-19934.
    • (2010) J. Biol. Chem. , vol.285 , pp. 19927-19934
    • Mittal, R.1
  • 26
    • 38949116573 scopus 로고    scopus 로고
    • Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways
    • Hao Y.H., et al. Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways. PLoS ONE 2008, 3:e1375.
    • (2008) PLoS ONE , vol.3
    • Hao, Y.H.1
  • 27
    • 53249154203 scopus 로고    scopus 로고
    • Function and regulation of protein neddylation
    • Rabut G., Peter M. Function and regulation of protein neddylation. EMBO Rep. 2008, 9:969-976.
    • (2008) EMBO Rep. , vol.9 , pp. 969-976
    • Rabut, G.1    Peter, M.2
  • 28
    • 33846199469 scopus 로고    scopus 로고
    • Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors
    • Ashida H., et al. Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol. Microbiol. 2007, 63:680-693.
    • (2007) Mol. Microbiol. , vol.63 , pp. 680-693
    • Ashida, H.1
  • 29
    • 33947727977 scopus 로고    scopus 로고
    • Type III secretion effectors of the IpaH family are E3 ubiquitin ligases
    • Rohde J.R., et al. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2007, 1:77-83.
    • (2007) Cell Host Microbe , vol.1 , pp. 77-83
    • Rohde, J.R.1
  • 30
    • 57149105701 scopus 로고    scopus 로고
    • Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases
    • Singer A.U., et al. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 2008, 15:1293-1301.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1293-1301
    • Singer, A.U.1
  • 31
    • 57149098210 scopus 로고    scopus 로고
    • Structure of a Shigella effector reveals a new class of ubiquitin ligases
    • Zhu Y., et al. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 2008, 15:1302-1308.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1302-1308
    • Zhu, Y.1
  • 32
    • 63849280748 scopus 로고    scopus 로고
    • A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases
    • Quezada C.M., et al. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4864-4869.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4864-4869
    • Quezada, C.M.1
  • 33
    • 77649242746 scopus 로고    scopus 로고
    • Identification of an unconventional E3 binding surface on the UbcH5-Ub conjugate recognized by a pathogenic bacterial E3 ligase
    • Levin I., et al. Identification of an unconventional E3 binding surface on the UbcH5-Ub conjugate recognized by a pathogenic bacterial E3 ligase. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:2848-2853.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 2848-2853
    • Levin, I.1
  • 34
    • 77957141668 scopus 로고    scopus 로고
    • A disulfide driven domain swap switches off the activity of Shigella IpaH9.8 E3 ligase
    • Seyedarabi A., et al. A disulfide driven domain swap switches off the activity of Shigella IpaH9.8 E3 ligase. FEBS Lett. 2010, 584:4163-4168.
    • (2010) FEBS Lett. , vol.584 , pp. 4163-4168
    • Seyedarabi, A.1
  • 35
    • 33645551769 scopus 로고    scopus 로고
    • A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1
    • Haraga A., Miller S.I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol. 2006, 8:837-846.
    • (2006) Cell Microbiol. , vol.8 , pp. 837-846
    • Haraga, A.1    Miller, S.I.2
  • 36
    • 77955109451 scopus 로고    scopus 로고
    • A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response
    • Ashida H., et al. A bacterial E3 ubiquitin ligase IpaH9.8 targets NEMO/IKKgamma to dampen the host NF-kappaB-mediated inflammatory response. Nat. Cell Biol. 2010, 12:66-73.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 66-73
    • Ashida, H.1
  • 37
    • 84954358763 scopus 로고    scopus 로고
    • Structure of the cyclomodulin Cif from pathogenic Escherichia coli
    • Hsu Y., et al. Structure of the cyclomodulin Cif from pathogenic Escherichia coli. J. Mol. Biol. 2008, 384:465-477.
    • (2008) J. Mol. Biol. , vol.384 , pp. 465-477
    • Hsu, Y.1
  • 38
    • 63449104389 scopus 로고    scopus 로고
    • Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens
    • Jubelin G., et al. Cycle inhibiting factors (CIFs) are a growing family of functional cyclomodulins present in invertebrate and mammal bacterial pathogens. PLoS ONE 2009, 4:e4855.
    • (2009) PLoS ONE , vol.4
    • Jubelin, G.1
  • 39
    • 62649121372 scopus 로고    scopus 로고
    • A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle
    • Yao Q., et al. A bacterial type III effector family uses the papain-like hydrolytic activity to arrest the host cell cycle. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:3716-3721.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 3716-3721
    • Yao, Q.1
  • 40
    • 65949108013 scopus 로고    scopus 로고
    • Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei
    • Crow A., et al. Crystal structures of Cif from bacterial pathogens Photorhabdus luminescens and Burkholderia pseudomallei. PLoS ONE 2009, 4:e5582.
    • (2009) PLoS ONE , vol.4
    • Crow, A.1
  • 41
    • 77956296853 scopus 로고    scopus 로고
    • Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family
    • Cui J., et al. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 2010, 329:1215-1218.
    • (2010) Science , vol.329 , pp. 1215-1218
    • Cui, J.1
  • 42
    • 78149309149 scopus 로고    scopus 로고
    • Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways
    • Jubelin G., et al. Pathogenic bacteria target NEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog. 2010, 6.
    • (2010) PLoS Pathog. , pp. 6
    • Jubelin, G.1
  • 43
    • 77957790866 scopus 로고    scopus 로고
    • The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of cullin1
    • Morikawa H., et al. The bacterial effector Cif interferes with SCF ubiquitin ligase function by inhibiting deneddylation of cullin1. Biochem. Biophys. Res. Commun. 2010, 401:268-274.
    • (2010) Biochem. Biophys. Res. Commun. , vol.401 , pp. 268-274
    • Morikawa, H.1
  • 44
    • 50449108516 scopus 로고    scopus 로고
    • Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation
    • Duda D.M., et al. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 2008, 134:995-1006.
    • (2008) Cell , vol.134 , pp. 995-1006
    • Duda, D.M.1
  • 45
    • 70349168448 scopus 로고    scopus 로고
    • Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement
    • Chen Y., et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol. Cell 2009, 35:841-855.
    • (2009) Mol. Cell , vol.35 , pp. 841-855
    • Chen, Y.1
  • 46
    • 78751705243 scopus 로고    scopus 로고
    • Coordination of intracellular transport steps by GTPases
    • Segev N. Coordination of intracellular transport steps by GTPases. Semin Cell Dev. Biol. 2011, 22:33-38.
    • (2011) Semin Cell Dev. Biol. , vol.22 , pp. 33-38
    • Segev, N.1
  • 47
    • 17844406602 scopus 로고    scopus 로고
    • Bacterial cytotoxins: targeting eukaryotic switches
    • Aktories K., Barbieri J.T. Bacterial cytotoxins: targeting eukaryotic switches. Nat. Rev. Microbiol. 2005, 3:397-410.
    • (2005) Nat. Rev. Microbiol. , vol.3 , pp. 397-410
    • Aktories, K.1    Barbieri, J.T.2
  • 48
    • 79960923484 scopus 로고    scopus 로고
    • AMPylation: something old is new again
    • Woolery A.R., et al. AMPylation: something old is new again. Front Microbiol. 2010, 1:113.
    • (2010) Front Microbiol. , vol.1 , pp. 113
    • Woolery, A.R.1
  • 49
    • 79954423286 scopus 로고    scopus 로고
    • Adenylylation: renaissance of a forgotten post-translational modification
    • Itzen A., et al. Adenylylation: renaissance of a forgotten post-translational modification. Trends Biochem. Sci. 2011, 36:221-228.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 221-228
    • Itzen, A.1
  • 50
    • 42949152423 scopus 로고    scopus 로고
    • Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system
    • Casselli T., et al. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system. Infect. Immun. 2008, 76:2202-2211.
    • (2008) Infect. Immun. , vol.76 , pp. 2202-2211
    • Casselli, T.1
  • 51
    • 58149400542 scopus 로고    scopus 로고
    • AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling
    • Yarbrough M.L., et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 2009, 323:269-272.
    • (2009) Science , vol.323 , pp. 269-272
    • Yarbrough, M.L.1
  • 52
    • 63649139064 scopus 로고    scopus 로고
    • The Fic domain: regulation of cell signaling by adenylylation
    • Worby C.A., et al. The Fic domain: regulation of cell signaling by adenylylation. Mol. Cell 2009, 34:93-103.
    • (2009) Mol. Cell , vol.34 , pp. 93-103
    • Worby, C.A.1
  • 53
    • 77953766744 scopus 로고    scopus 로고
    • Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain
    • Luong P., et al. Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain. J. Biol. Chem. 2010, 285:20155-20163.
    • (2010) J. Biol. Chem. , vol.285 , pp. 20155-20163
    • Luong, P.1
  • 54
    • 77955416465 scopus 로고    scopus 로고
    • Structural basis of Fic-mediated adenylylation
    • Xiao J., et al. Structural basis of Fic-mediated adenylylation. Nat. Struct. Mol. Biol. 2010, 17:1004-1010.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1004-1010
    • Xiao, J.1
  • 55
    • 79952128780 scopus 로고    scopus 로고
    • Fic domain-catalyzed adenylylation: insight provided by the structural analysis of the type IV secretion system effector BepA
    • Palanivelu D.V., et al. Fic domain-catalyzed adenylylation: insight provided by the structural analysis of the type IV secretion system effector BepA. Protein Sci. 2011, 20:492-499.
    • (2011) Protein Sci. , vol.20 , pp. 492-499
    • Palanivelu, D.V.1
  • 56
    • 57649149094 scopus 로고    scopus 로고
    • The Legionella pneumophila replication vacuole: making a cosy niche inside host cells
    • Isberg R.R., et al. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 2009, 7:13-24.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 13-24
    • Isberg, R.R.1
  • 57
    • 84889234826 scopus 로고    scopus 로고
    • Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila
    • Machner M.P., Isberg R.R. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 2006, 11:47-56.
    • (2006) Dev. Cell , vol.11 , pp. 47-56
    • Machner, M.P.1    Isberg, R.R.2
  • 58
    • 33748172869 scopus 로고    scopus 로고
    • The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor
    • Murata T., et al. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 2006, 8:971-977.
    • (2006) Nat. Cell Biol. , vol.8 , pp. 971-977
    • Murata, T.1
  • 59
    • 36249027095 scopus 로고    scopus 로고
    • Legionella pneumophila proteins that regulate Rab1 membrane cycling
    • Ingmundson A., et al. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 2007, 450:365-369.
    • (2007) Nature , vol.450 , pp. 365-369
    • Ingmundson, A.1
  • 60
    • 84889234796 scopus 로고    scopus 로고
    • A bifunctional bacterial protein links GDI displacement to Rab1 activation
    • Machner M.P., Isberg R.R. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 2007, 318:974-977.
    • (2007) Science , vol.318 , pp. 974-977
    • Machner, M.P.1    Isberg, R.R.2
  • 61
    • 72449132474 scopus 로고    scopus 로고
    • RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity
    • Schoebel S., et al. RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol. Cell 2009, 36:1060-1072.
    • (2009) Mol. Cell , vol.36 , pp. 1060-1072
    • Schoebel, S.1
  • 62
    • 75049083763 scopus 로고    scopus 로고
    • Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA
    • Suh H.Y., et al. Structural insights into the dual nucleotide exchange and GDI displacement activity of SidM/DrrA. EMBO J. 2010, 29:496-504.
    • (2010) EMBO J. , vol.29 , pp. 496-504
    • Suh, H.Y.1
  • 63
    • 77949498580 scopus 로고    scopus 로고
    • Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA
    • Zhu Y., et al. Structural mechanism of host Rab1 activation by the bifunctional Legionella type IV effector SidM/DrrA. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:4699-4704.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 4699-4704
    • Zhu, Y.1
  • 64
    • 77955872117 scopus 로고    scopus 로고
    • The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b
    • Muller M.P., et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010, 329:946-949.
    • (2010) Science , vol.329 , pp. 946-949
    • Muller, M.P.1
  • 65
    • 77949324163 scopus 로고    scopus 로고
    • Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site
    • Xu Y., et al. Structure of the adenylylation domain of E. coli glutamine synthetase adenylyl transferase: evidence for gene duplication and evolution of a new active site. J. Mol. Biol. 2010, 396:773-784.
    • (2010) J. Mol. Biol. , vol.396 , pp. 773-784
    • Xu, Y.1
  • 66
    • 0030880188 scopus 로고    scopus 로고
    • The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction
    • Jaggi R., et al. The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J. 1997, 16:5562-5571.
    • (1997) EMBO J. , vol.16 , pp. 5562-5571
    • Jaggi, R.1
  • 67
    • 79151471802 scopus 로고    scopus 로고
    • Characterization of a rabbit polyclonal antibody against threonine-AMPylation
    • Hao Y.H., et al. Characterization of a rabbit polyclonal antibody against threonine-AMPylation. J. Biotechnol. 2011, 151:251-254.
    • (2011) J. Biotechnol. , vol.151 , pp. 251-254
    • Hao, Y.H.1
  • 68
    • 78650973579 scopus 로고    scopus 로고
    • The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold
    • Selyunin A.S., et al. The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature 2011, 469:107-111.
    • (2011) Nature , vol.469 , pp. 107-111
    • Selyunin, A.S.1
  • 69
    • 79851474020 scopus 로고    scopus 로고
    • Structural and functional studies indicate that the EPEC effector, EspG, directly binds p21-activated kinase
    • Germane K.L., Spiller B.W. Structural and functional studies indicate that the EPEC effector, EspG, directly binds p21-activated kinase. Biochemistry 2011, 50:917-919.
    • (2011) Biochemistry , vol.50 , pp. 917-919
    • Germane, K.L.1    Spiller, B.W.2
  • 70
    • 34748911856 scopus 로고    scopus 로고
    • The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways
    • Alto N.M., et al. The type III effector EspF coordinates membrane trafficking by the spatiotemporal activation of two eukaryotic signaling pathways. J. Cell Biol. 2007, 178:1265-1278.
    • (2007) J. Cell Biol. , vol.178 , pp. 1265-1278
    • Alto, N.M.1
  • 71
    • 66149131872 scopus 로고    scopus 로고
    • Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation
    • Vingadassalom D., et al. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:6754-6759.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 6754-6759
    • Vingadassalom, D.1
  • 72
    • 62249154784 scopus 로고    scopus 로고
    • IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation
    • Weiss S.M., et al. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 2009, 5:244-258.
    • (2009) Cell Host Microbe , vol.5 , pp. 244-258
    • Weiss, S.M.1
  • 73
    • 77958128363 scopus 로고    scopus 로고
    • Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation
    • Vingadassalom D., et al. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLoS Pathog. 2010, 6.
    • (2010) PLoS Pathog. , pp. 6
    • Vingadassalom, D.1
  • 74
    • 0029864857 scopus 로고    scopus 로고
    • Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells
    • Stein M.A., et al. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 1996, 20:151-164.
    • (1996) Mol. Microbiol. , vol.20 , pp. 151-164
    • Stein, M.A.1
  • 75
    • 0036091252 scopus 로고    scopus 로고
    • Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane
    • Ruiz-Albert J., et al. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 2002, 44:645-661.
    • (2002) Mol. Microbiol. , vol.44 , pp. 645-661
    • Ruiz-Albert, J.1
  • 76
    • 0037218484 scopus 로고    scopus 로고
    • The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole
    • Freeman J.A., et al. The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect. Immun. 2003, 71:418-427.
    • (2003) Infect. Immun. , vol.71 , pp. 418-427
    • Freeman, J.A.1
  • 77
    • 0037853214 scopus 로고    scopus 로고
    • Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function
    • Boucrot E., et al. Salmonella typhimurium SifA effector protein requires its membrane-anchoring C-terminal hexapeptide for its biological function. J. Biol. Chem. 2003, 278:14196-14202.
    • (2003) J. Biol. Chem. , vol.278 , pp. 14196-14202
    • Boucrot, E.1
  • 78
    • 17644396395 scopus 로고    scopus 로고
    • A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery
    • Reinicke A.T., et al. A Salmonella typhimurium effector protein SifA is modified by host cell prenylation and S-acylation machinery. J. Biol. Chem. 2005, 280:14620-14627.
    • (2005) J. Biol. Chem. , vol.280 , pp. 14620-14627
    • Reinicke, A.T.1
  • 79
    • 55249084667 scopus 로고    scopus 로고
    • Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation
    • Ohlson M.B., et al. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 2008, 4:434-446.
    • (2008) Cell Host Microbe , vol.4 , pp. 434-446
    • Ohlson, M.B.1
  • 80
    • 70450260528 scopus 로고    scopus 로고
    • Interaction between the SifA virulence factor and its host target SKIP is essential for Salmonella pathogenesis
    • Diacovich L., et al. Interaction between the SifA virulence factor and its host target SKIP is essential for Salmonella pathogenesis. J. Biol. Chem. 2009, 284:33151-33160.
    • (2009) J. Biol. Chem. , vol.284 , pp. 33151-33160
    • Diacovich, L.1
  • 81
    • 77954801130 scopus 로고    scopus 로고
    • SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges
    • Dumont A., et al. SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges. Traffic 2010, 11:899-911.
    • (2010) Traffic , vol.11 , pp. 899-911
    • Dumont, A.1
  • 82
    • 25444476973 scopus 로고    scopus 로고
    • SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice
    • Ohlson M.B., et al. SseJ deacylase activity by Salmonella enterica serovar Typhimurium promotes virulence in mice. Infect. Immun. 2005, 73:6249-6259.
    • (2005) Infect. Immun. , vol.73 , pp. 6249-6259
    • Ohlson, M.B.1
  • 83
    • 53449099515 scopus 로고    scopus 로고
    • The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity
    • Lossi N.S., et al. The Salmonella SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. Microbiology 2008, 154:2680-2688.
    • (2008) Microbiology , vol.154 , pp. 2680-2688
    • Lossi, N.S.1
  • 84
    • 40549121946 scopus 로고    scopus 로고
    • Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection
    • Nawabi P., et al. Esterification of cholesterol by a type III secretion effector during intracellular Salmonella infection. Mol. Microbiol. 2008, 68:173-185.
    • (2008) Mol. Microbiol. , vol.68 , pp. 173-185
    • Nawabi, P.1
  • 85
    • 73949144553 scopus 로고    scopus 로고
    • Activation of a bacterial virulence protein by the GTPase RhoA
    • Christen M., et al. Activation of a bacterial virulence protein by the GTPase RhoA. Sci. Signal. 2009, 2:ra71.
    • (2009) Sci. Signal. , vol.2
    • Christen, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.