메뉴 건너뛰기




Volumn 4, Issue 3, 2011, Pages 147-176

Recent advanced statistical background modeling for foreground detection - A systematic survey

Author keywords

Background modeling; Kernel density estimation; Mixture of gaussians; Single gaussian; Subspace learning

Indexed keywords

OBJECT DETECTION; PATENTS AND INVENTIONS; STATISTICAL METHODS;

EID: 80053143044     PISSN: 18744796     EISSN: None     Source Type: Journal    
DOI: 10.2174/1874479611104030147     Document Type: Article
Times cited : (310)

References (368)
  • 1
    • 29544448961 scopus 로고    scopus 로고
    • Robust background subtraction with foreground validation for urban traffic video
    • Cheung S, Kamath C. Robust background subtraction with foreground validation for urban traffic video. J Applied Signal Process 2005; 14: 2330-2340.
    • (2005) J Applied Signal Process , vol.14 , pp. 2330-2340
    • Cheung, S.1    Kamath, C.2
  • 8
    • 55249110878 scopus 로고    scopus 로고
    • Moving object detection in spatial domain using background removal techniques - state-of-art
    • Elhabian S, El-Sayed K, Ahmed S. Moving object detection in spatial domain using background removal techniques - state-of-art. Rec Pat Comput Sci 2008; 1(1): 32-54.
    • (2008) Rec Pat Comput Sci , vol.1 , Issue.1 , pp. 32-54
    • Elhabian, S.1    El-Sayed, K.2    Ahmed, S.3
  • 10
    • 33744929995 scopus 로고    scopus 로고
    • Background estimation for video surveillance
    • Lee B, Hedley M. Background estimation for video surveillance. IVCNZ 2002; 315-320.
    • (2002) IVCNZ , pp. 315-320
    • Lee, B.1    Hedley, M.2
  • 11
    • 0029220539 scopus 로고
    • Segmentation and tracking of piglets in images
    • McFarlane N, Schofield C. Segmentation and tracking of piglets in images. BMVA 1995; 187-193.
    • (1995) BMVA , pp. 187-193
    • McFarlane, N.1    Schofield, C.2
  • 12
    • 33749574135 scopus 로고    scopus 로고
    • Extracting roadway background image: A mode based approach
    • Zheng J, Wang Y, Nihan N, Hallenbeck E. Extracting roadway background image: a mode based approach. J Transport Res 2006; 82-88.
    • (2006) J Transport Res , pp. 82-88
    • Zheng, J.1    Wang, Y.2    Nihan, N.3    Hallenbeck, E.4
  • 14
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. CVPR 1999; 246-252.
    • (1999) CVPR , pp. 246-252
    • Stauffer, C.1    Grimson, W.2
  • 15
    • 84944070277 scopus 로고    scopus 로고
    • Non-parametric model for background subtraction
    • Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction. ECCV 2000; 751-767.
    • (2000) ECCV , pp. 751-767
    • Elgammal, A.1    Harwood, D.2    Davis, L.3
  • 16
    • 67249094811 scopus 로고    scopus 로고
    • Fuzzy running average and fuzzy background subtraction: Concepts and application
    • Sigari M, Mozayani N, Pourreza H. Fuzzy running average and fuzzy background subtraction: concepts and application. Int J Comput Sci Net Security 2008; 8(2): 138-143.
    • (2008) Int J Comput Sci Net Security , vol.8 , Issue.2 , pp. 138-143
    • Sigari, M.1    Mozayani, N.2    Pourreza, H.3
  • 17
    • 68649118096 scopus 로고    scopus 로고
    • Type-2 fuzzy mixture of Gaussians model: Application to background modeling
    • El Baf F, Bouwmans T, Vachon B. Type-2 fuzzy mixture of Gaussians model: Application to background modeling. ISVC 2008 772-781.
    • (2008) ISVC , pp. 772-781
    • El-Baf, F.1    Bouwmans, T.2    Vachon, B.3
  • 18
    • 33750571836 scopus 로고    scopus 로고
    • International Conference on Fuzzy Systems and Knowledge Discovery, September 2006
    • Zhang H, Xu D. Fusing color and texture features for background model. International Conference on Fuzzy Systems and Knowledge Discovery, Volume 4223, No. 7, pages 887-893, September 2006.
    • Fusing Color and Texture Features For Background Model , vol.4223 , Issue.7 , pp. 887-893
    • Zhang, H.1    Xu, D.2
  • 19
    • 55249090415 scopus 로고    scopus 로고
    • Fuzzy integral for moving object detection
    • El Baf F, Bouwmans T, Vachon B. Fuzzy integral for moving object detection. FUZZ-IEEE 2008; 1729-1736.
    • (2008) FUZZ-IEEE , pp. 1729-1736
    • El-Baf, F.1    Bouwmans, T.2    Vachon, B.3
  • 20
    • 80053147755 scopus 로고    scopus 로고
    • Adaptive background subtraction in dynamic environments using fuzzy logic
    • Sivabalakrishnan M, Manjula D. Adaptive background subtraction in dynamic environments using fuzzy logic. Int J Comput Sci Engineer 2010; 2(2): 270-273.
    • (2010) Int J Comput Sci Engineer , vol.2 , Issue.2 , pp. 270-273
    • Sivabalakrishnan, M.1    Manjula, D.2
  • 21
    • 0141453272 scopus 로고    scopus 로고
    • Real-time adaptive background segmentation
    • Butler D, Sridharan S. Real-time adaptive background segmentation. ICASSP 2003; 2003.
    • (2003) ICASSP , pp. 2003
    • Butler, D.1    Sridharan, S.2
  • 23
    • 36348980559 scopus 로고    scopus 로고
    • Neural network approach to background modeling for video object segmentation
    • Culbrik D, Marques O, Socek D, Kalva H, Furht B. Neural network approach to background modeling for video object segmentation. IEEE Transact Neural Networks 2007; 18(6): 1614-1627.
    • (2007) IEEE Transact Neural Networks , vol.18 , Issue.6 , pp. 1614-1627
    • Culbrik, D.1    Marques, O.2    Socek, D.3    Kalva, H.4    Furht, B.5
  • 24
    • 45949086871 scopus 로고    scopus 로고
    • A self organizing approach to background subtraction for visual surveillance applications
    • Maddalena L, Petrosino A. A self organizing approach to background subtraction for visual surveillance applications. IEEE Transact Image Process 2008; 17(7): 1729-1736.
    • (2008) IEEE Transact Image Process , vol.17 , Issue.7 , pp. 1729-1736
    • Maddalena, L.1    Petrosino, A.2
  • 25
    • 80053145726 scopus 로고    scopus 로고
    • Background modeling and implementation using discrete wavelet transform: A review
    • Biswas S, Sil J, Sengupta N. Background modeling and implementation using discrete wavelet transform: a review. JICGST-GVIP 2011; 11(1): 29-42.
    • (2011) JICGST-GVIP , vol.11 , Issue.1 , pp. 29-42
    • Biswas, S.1    Sil, J.2    Sengupta, N.3
  • 27
    • 33745121577 scopus 로고    scopus 로고
    • A Kalman filter based background updating algorithm robust to sharp illumination changes
    • Messelodi S, Modena C, Segata N, Zanin M. A Kalman filter based background updating algorithm robust to sharp illumination changes. ICIAP 2005; 3617: 163-170.
    • (2005) ICIAP , vol.3617 , pp. 163-170
    • Messelodi, S.1    Modena, C.2    Segata, N.3    Zanin, M.4
  • 28
    • 13344261350 scopus 로고    scopus 로고
    • Vision modules for a multi sensory bridge monitoring approach
    • Chang R, Ghandi T, Trivedi M. Vision modules for a multi sensory bridge monitoring approach. ITSC 2004; 971-976.
    • (2004) ITSC , pp. 971-976
    • Chang, R.1    Ghandi, T.2    Trivedi, M.3
  • 29
    • 33744961948 scopus 로고    scopus 로고
    • A novel robust statistical method for background initialization and visual surveillance
    • Wang H, Suter D. A novel robust statistical method for background initialization and visual surveillance. ACCV 2006; 3851: 328-337.
    • (2006) ACCV , vol.3851 , pp. 328-337
    • Wang, H.1    Suter, D.2
  • 30
    • 13344292020 scopus 로고    scopus 로고
    • Human Body Tracking by adaptive background models and mean-shift analysis
    • Porikli F. Human Body Tracking by adaptive background models and mean-shift analysis. PETS 2003; 2003.
    • (2003) PETS , pp. 2003
    • Porikli, F.1
  • 31
    • 84958699888 scopus 로고    scopus 로고
    • Bayesian background modeling for foreground detection
    • Porikli F, Tuzel O. Bayesian background modeling for foreground detection. VSSN 2005; 55-58.
    • (2005) VSSN , pp. 55-58
    • Porikli, F.1    Tuzel, O.2
  • 32
    • 34547234483 scopus 로고    scopus 로고
    • A multiscale parametric background model for stationary foreground object detection
    • Cheng S, Luo X, Bhandarkar S. A multiscale parametric background model for stationary foreground object detection. WMVC 2007; 2007.
    • (2007) WMVC , pp. 2007
    • Cheng, S.1    Luo, X.2    Bhandarkar, S.3
  • 33
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex background for foreground object detection
    • Li L, Huang W, Gu I, Tian Q. Statistical modeling of complex background for foreground object detection. IEEE Transact Image Process 2004; 13(11): 1459-1472.
    • (2004) IEEE Transact Image Process , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 34
    • 84878373179 scopus 로고    scopus 로고
    • Wallflower Dataset: http://research.microsoft.com/users/jckrumm/WallFlower/TestImages.htm
    • Wallflower Dataset
  • 35
    • 85038503338 scopus 로고    scopus 로고
    • ATON Dataset: http://cvrr.ucsd.edu/aton/shadow/
    • ATON Dataset
  • 36
    • 85038526942 scopus 로고    scopus 로고
    • OTCBVS Dataset: http://www.cse.ohio-state.edu/otcbvs-bench/
    • OTCBVS Dataset
  • 37
    • 85038480895 scopus 로고    scopus 로고
    • VSSN Dataset: http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/
    • VSSN Dataset
  • 38
  • 39
    • 85038505161 scopus 로고    scopus 로고
    • IPPR Dataset: http://archer.ee.nctu.edu.tw/contest/
    • IPPR Dataset
  • 40
    • 33749249600 scopus 로고    scopus 로고
    • The Relationship between Precision-Recall and ROC Curves
    • Davis J, Goadrich M. The Relationship between Precision-Recall and ROC Curves. ICML 2006; 148: 233-240
    • (2006) ICML , vol.148 , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 42
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex background for foreground object detection
    • Li L, Huang W, Gu I, Tian Q. Statistical modeling of complex background for foreground object detection. IEEE Transact Image process 2004 13(11): 1459-1472.
    • (2004) IEEE Transact Image Process , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 43
    • 33746649575 scopus 로고    scopus 로고
    • Performance evaluation of object detection algorithms for video surveillance
    • Nascimento J, Marques J. Performance evaluation of object detection algorithms for video surveillance. IEEE Transact Multimedia 2006; 761-774.
    • (2006) IEEE Transact Multimedia , pp. 761-774
    • Nascimento, J.1    Marques, J.2
  • 45
    • 32544460952 scopus 로고    scopus 로고
    • Update the GMMs via adaptive Kalman filtering
    • Han B, Lin X. Update the GMMs via adaptive Kalman filtering. Proceedings of SPIE, Volume 5960, Issue 3, pages 1506-1515, 2005.
    • (2005) Proceedings of SPIE , vol.5960 , Issue.3 , pp. 1506-1515
    • Han, B.1    Lin, X.2
  • 46
    • 48149088137 scopus 로고    scopus 로고
    • Accurate dynamic scene model for moving object detection
    • Yang H, Tan Y, Tian J, Liu J. Accurate dynamic scene model for moving object detection. ICIP 2007; 6: 157-160.
    • (2007) ICIP , vol.6 , pp. 157-160
    • Yang, H.1    Tan, Y.2    Tian, J.3    Liu, J.4
  • 47
    • 34548069655 scopus 로고    scopus 로고
    • Spatiotemporal Gaussian mixture model to detect moving objects in dynamic scenes
    • Zhang W, Fang X, Yang X., Wu Q. Spatiotemporal Gaussian mixture model to detect moving objects in dynamic scenes. J Electron Imag 2007; 16(2).
    • (2007) J Electron Imag , vol.16 , Issue.2
    • Zhang, W.1    Fang, X.2    Yang, X.3    Wu, Q.4
  • 48
    • 47349103240 scopus 로고    scopus 로고
    • Salient moving object detection using stochastic approach filtering
    • Tang P, Gao L, Liu Z. Salient moving object detection using stochastic approach filtering. ICIG 2007; 530-535.
    • (2007) ICIG , pp. 530-535
    • Tang, P.1    Gao, L.2    Liu, Z.3
  • 49
    • 84950000200 scopus 로고    scopus 로고
    • A framework for high-level feedback to adaptive, perpixel, mixture-of-Gaussian background models
    • Harville M. A framework for high-level feedback to adaptive, perpixel, mixture-of-Gaussian background models. ECCV 2002; 543-560.
    • (2002) ECCV , pp. 543-560
    • Harville, M.1
  • 50
    • 67650257970 scopus 로고    scopus 로고
    • A spatial sampling mechanism for effective background subtraction
    • Cristani M, Murino V. A spatial sampling mechanism for effective background subtraction. VISAPP 2007; 2: 403-410.
    • (2007) VISAPP , vol.2 , pp. 403-410
    • Cristani, M.1    Murino, V.2
  • 51
    • 70449580219 scopus 로고    scopus 로고
    • Background Modeling using Mixture of Gaussians for Foreground Detection - A survey
    • Bouwmans T, El Baf F, Vachon B, Background Modeling using Mixture of Gaussians for Foreground Detection - A survey. Rec Pat Comput Sci 2008; 1(3): 219-237.
    • (2008) Rec Pat Comput Sci , vol.1 , Issue.3 , pp. 219-237
    • Bouwmans, T.1    El-Baf, F.2    Vachon, B.3
  • 52
    • 78651592868 scopus 로고    scopus 로고
    • Subspace learning for background modeling: A survey
    • Bouwmans T. Subspace learning for background modeling: A survey. Rec Pat Comput Sci 2009; 2(3): 223-234.
    • (2009) Rec Pat Comput Sci , vol.2 , Issue.3 , pp. 223-234
    • Bouwmans, T.1
  • 53
    • 0004737754 scopus 로고    scopus 로고
    • A Bayesian computer vision system for modeling human interactions
    • Oliver N, Rosario B, Pentland A. A Bayesian computer vision system for modeling human interactions. ICVS 1999.
    • (1999) ICVS
    • Oliver, N.1    Rosario, B.2    Pentland, A.3
  • 54
    • 0036453534 scopus 로고    scopus 로고
    • A probabilistic SVM approach for background scene initialization
    • Lin H, Liu T, Chuang J. A probabilistic SVM approach for background scene initialization, ICIP 2002; 3: 893-896.
    • (2002) ICIP , vol.3 , pp. 893-896
    • Lin, H.1    Liu, T.2    Chuang, J.3
  • 56
    • 33845541590 scopus 로고    scopus 로고
    • Robust video-based surveillance by integrating target detection with tracking
    • Wang J, Bebis G, Miller R. Robust video-based surveillance by integrating target detection with tracking. CVPR 2006.
    • (2006) CVPR
    • Wang, J.1    Bebis, G.2    Miller, R.3
  • 57
    • 33845401317 scopus 로고    scopus 로고
    • A novelty detection approach for foreground region detection in videos with quasi-stationary backgrounds
    • Tavakkoli A, Nicolescu M, Bebis G. A novelty detection approach for foreground region detection in videos with quasi-stationary backgrounds. ISVC 2006; 40-49.
    • (2006) ISVC , pp. 40-49
    • Tavakkoli, A.1    Nicolescu, M.2    Bebis, G.3
  • 58
    • 80053169370 scopus 로고    scopus 로고
    • A genetic approach to training support vector dada descriptors for background modeling in video data
    • Tavakkoli A, Ambardekar A, Nicolescu M, Louis S. A genetic approach to training support vector dada descriptors for background modeling in video data. ISVC 2007.
    • (2007) ISVC
    • Tavakkoli, A.1    Ambardekar, A.2    Nicolescu, M.3    Louis, S.4
  • 60
    • 77957969681 scopus 로고    scopus 로고
    • Efficient background modeling through incremental support vector data description
    • Tavakkoli A, Nicolescu M, Nicolescu M, Bebis G. Efficient background modeling through incremental support vector data description. ICPR 2008.
    • (2008) ICPR
    • Tavakkoli, A.1    Nicolescu, M.2    Nicolescu, M.3    Bebis, G.4
  • 62
    • 84870247017 scopus 로고    scopus 로고
    • Robust silhouette extraction technique using background subtraction, meeting on image recognition and understand
    • Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K. Robust silhouette extraction technique using background subtraction, meeting on image recognition and understand. MIRU 2007.
    • (2007) MIRU
    • Kim, H.1    Sakamoto, R.2    Kitahara, I.3    Toriyama, T.4    Kogure, K.5
  • 63
    • 38149078188 scopus 로고    scopus 로고
    • Robust foreground extraction technique using gaussian family model and multiple thresholds
    • LNCS
    • Kim H, Sakamoto R, Kitahara I, Toriyama T, Kogure K. Robust foreground extraction technique using gaussian family model and multiple thresholds. ACCV 2007; LNCS 4843 758-768.
    • (2007) ACCV , vol.4843 , pp. 758-768
    • Kim, H.1    Sakamoto, R.2    Kitahara, I.3    Toriyama, T.4    Kogure, K.5
  • 64
    • 33746365837 scopus 로고    scopus 로고
    • Unsupervised selection of a finite dirichlet mixture model: An MML-based approach
    • Bouguila N, Ziou D. Unsupervised selection of a finite dirichlet mixture model: An MML-based approach. IEEE Transact KDE 2006; 18: 993-1009.
    • (2006) IEEE Transact KDE , vol.18 , pp. 993-1009
    • Bouguila, N.1    Ziou, D.2
  • 65
    • 34548763871 scopus 로고    scopus 로고
    • A robust video foreground segmentation by using generalized gaussian mixture modeling
    • Canadian Conference on Computer and Robot Vision
    • Allili M, Bouguila N, Ziou D. A robust video foreground segmentation by using generalized gaussian mixture modeling. Canadian Conference on Computer and Robot Vision, CRV 2007, pages 503-509, 2007.
    • (2007) CRV , pp. 503-509
    • Allili, M.1    Bouguila, N.2    Ziou, D.3
  • 66
    • 78149489170 scopus 로고    scopus 로고
    • Finite generalized gaussian mixture modelling and application to image and video foreground segmentation
    • Allili M, Bouguila N, Ziou D. Finite generalized gaussian mixture modelling and application to image and video foreground segmentation. J Electron Imag 2008.
    • (2008) J Electron Imag
    • Allili, M.1    Bouguila, N.2    Ziou, D.3
  • 67
    • 33744942099 scopus 로고    scopus 로고
    • Detection of moving objects by independent component analysis
    • Yamazaki M, Xu G, Chen Y. Detection of moving objects by independent component analysis. ACCV 2006; 467-478.
    • (2006) ACCV , pp. 467-478
    • Yamazaki, M.1    Xu, G.2    Chen, Y.3
  • 68
    • 58049211805 scopus 로고    scopus 로고
    • Independent component analysis-based background subtraction for indoor surveillance
    • Tsai D, Lai C. Independent component analysis-based background subtraction for indoor surveillance. IEEE Transact Image Process IP 2009; 18(1): 158-167.
    • (2009) IEEE Transact Image Process IP , vol.18 , Issue.1 , pp. 158-167
    • Tsai, D.1    Lai, C.2
  • 70
    • 58249090788 scopus 로고    scopus 로고
    • Incremental subspace learning and generating sparse representations via non-negative matrix factorization
    • Bucak S, Gunsel B. Incremental subspace learning and generating sparse representations via non-negative matrix factorization. Patt Recogn 2009; 42(5): 788-797.
    • (2009) Patt Recogn , vol.42 , Issue.5 , pp. 788-797
    • Bucak, S.1    Gunsel, B.2
  • 71
    • 70449586389 scopus 로고    scopus 로고
    • Robust foreground segmentation based on two effective background models
    • Li X, Hu W, Zhang Z, Zhang X. Robust foreground segmentation based on two effective background models. MIR 2008; 223-228.
    • (2008) MIR , pp. 223-228
    • Li, X.1    Hu, W.2    Zhang, Z.3    Zhang, X.4
  • 72
    • 79851515408 scopus 로고    scopus 로고
    • Incremental tensor subspace learning and its applications to foreground segmentation and tracking
    • Hu W, Li X., Zhang X., Shi X., Maybank S, Zhang Z. Incremental tensor subspace learning and its applications to foreground segmentation and tracking. Int J Comput Vision 2011; 91(3): 303-327.
    • (2011) Int J Comput Vision , vol.91 , Issue.3 , pp. 303-327
    • Hu, W.1    Li, X.2    Zhang, X.3    Shi, X.4    Maybank, S.5    Zhang, Z.6
  • 75
    • 0001802715 scopus 로고    scopus 로고
    • Image segmentation in video sequences: A probabilistic approach
    • Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. UAI 1997; 175-1781.
    • (1997) UAI , pp. 175-1781
    • Friedman, N.1    Russell, S.2
  • 76
    • 13344279350 scopus 로고    scopus 로고
    • Practical mixtures of gaussians with brightness monitoring
    • Atev S, Masoud O, Papanikolopoulos N. Practical mixtures of gaussians with brightness monitoring. ITS 2004; 423-428.
    • (2004) ITS , pp. 423-428
    • Atev, S.1    Masoud, O.2    Papanikolopoulos, N.3
  • 78
    • 0035694422 scopus 로고    scopus 로고
    • The systematic design and analysis cycle of a vision system: A case study in video surveillance
    • Greiffenhagen M, Ramesh V, Niemann H. The systematic design and analysis cycle of a vision system: A case study in video surveillance. CVPR 2001, 2001.
    • (2001) CVPR , pp. 2001
    • Greiffenhagen, M.1    Ramesh, V.2    Niemann, H.3
  • 79
    • 77956534975 scopus 로고    scopus 로고
    • Background modelling and background subtraction performance for object detection
    • Mohamed S, Tahir N, Adnan R. Background modelling and background subtraction performance for object detection. CSPA 2010; 2010.
    • (2010) CSPA , pp. 2010
    • Mohamed, S.1    Tahir, N.2    Adnan, R.3
  • 81
    • 33646855413 scopus 로고    scopus 로고
    • Flexible background mixture models for foreground segmentation
    • Cheng J, Yang J, Zhou Y, Cui Y. Flexible background mixture models for foreground segmentation. Image Vision Comput 2006; 24: 473-482.
    • (2006) Image Vision Comput , vol.24 , pp. 473-482
    • Cheng, J.1    Yang, J.2    Zhou, Y.3    Cui, Y.4
  • 82
    • 34547274240 scopus 로고    scopus 로고
    • Dynamic control of adaptive mixture-of-gaussians background model
    • Shimada A, Arita D, Taniguchi R. Dynamic control of adaptive mixture-of-gaussians background model. AVSS 2006; 2006: 5.
    • (2006) AVSS , pp. 5
    • Shimada, A.1    Arita, D.2    Taniguchi, R.3
  • 83
    • 33750075442 scopus 로고    scopus 로고
    • Traffic Video Segmentation using Adaptive-K Gaussian Mixture Model
    • LNCS
    • Tan R, Huo H, Qian J, Fang T. Traffic Video Segmentation using Adaptive-K Gaussian Mixture Model. IWICPAS 2006; 2006: LNCS 4153, 125-134.
    • (2006) IWICPAS 2006 , vol.4153 , pp. 125-134
    • Tan, R.1    Huo, H.2    Qian, J.3    Fang, T.4
  • 84
    • 33749260913 scopus 로고    scopus 로고
    • Gaussian mixture classification for moving object detection in video surveillance environment
    • Carminati L, Benois-Pinau J. Gaussian mixture classification for moving object detection in video surveillance environment. ICIP 2005; 2005.
    • (2005) ICIP , pp. 2005
    • Carminati, L.1    Benois-Pinau, J.2
  • 85
    • 21144431710 scopus 로고    scopus 로고
    • DETER: Detection of events for threat evaluation and recognition
    • Morellas V, Pavlidis L, Tsiamyrtzis P. DETER: detection of events for threat evaluation and recognition. Machine Vision Appl 2003; 15: 29-45.
    • (2003) Machine Vision Appl , vol.15 , pp. 29-45
    • Morellas, V.1    Pavlidis, L.2    Tsiamyrtzis, P.3
  • 87
    • 33847294710 scopus 로고    scopus 로고
    • An adaptive mixture gaussian background model with online background reconstruction and adjustable foreground mergence time for motion segmentation
    • Zhang Y, Liang Z, Hou Z, Wang H., Tan M. An adaptive mixture gaussian background model with online background reconstruction and adjustable foreground mergence time for motion segmentation. ICIT 2005; 23-27.
    • (2005) ICIT , pp. 23-27
    • Zhang, Y.1    Liang, Z.2    Hou, Z.3    Wang, H.4    Tan, M.5
  • 91
    • 46449114701 scopus 로고    scopus 로고
    • Automatically tuning background subtraction parameters using particle swarm optimization
    • White B, Shah M. Automatically tuning background subtraction parameters using particle swarm optimization. ICME 2007; 1826-1829.
    • (2007) ICME , pp. 1826-1829
    • White, B.1    Shah, M.2
  • 92
    • 33646816406 scopus 로고    scopus 로고
    • A Re-evaluation of mixture-of-gaussian background modeling
    • Wang H, Suter D. A Re-evaluation of mixture-of-gaussian background modeling. ICASSP 2005; 2005: 1017-1020.
    • (2005) ICASSP , pp. 1017-1020
    • Wang, H.1    Suter, D.2
  • 94
    • 0034244889 scopus 로고    scopus 로고
    • Learning patterns of activity using real-time tracking
    • Stauffer C, Grimson E. Learning patterns of activity using real-time tracking. PAMI 2000 2000; 22: 747-757.
    • (2000) PAMI , Issue.22 , pp. 747-757
    • Stauffer, C.1    Grimson, E.2
  • 95
    • 0742303390 scopus 로고    scopus 로고
    • An Improved adaptive background mixture model for real-time tracking with shadow detection
    • KaewTraKulPong P. Bowden R. An Improved adaptive background mixture model for real-time tracking with shadow detection. AVBS 2001 2001.
    • (2001) AVBS , pp. 2001
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 96
    • 33646798956 scopus 로고    scopus 로고
    • Adaptive visual system for tracking low resolution color targets
    • KaewTraKulPong P, Bowden R. Adaptive visual system for tracking low resolution color targets. BMVC 2001 2001; 1: 243-252.
    • (2001) BMVC , Issue.1 , pp. 243-252
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 97
    • 0041508620 scopus 로고    scopus 로고
    • A real-time adaptive visual surveillance system for tracking low resolution color targets in dynamically changing scenes
    • KaewTraKulPong P, Bowden R. A real-time adaptive visual surveillance system for tracking low resolution color targets in dynamically changing scenes. J Image Vision Comput. 2003; 21(10): 913-929.
    • (2003) J Image Vision Comput , vol.21 , Issue.10 , pp. 913-929
    • Kaewtrakulpong, P.1    Bowden, R.2
  • 100
    • 13344292020 scopus 로고    scopus 로고
    • Human body tracking by adaptive background models and mean-shift analysis
    • Porikli F. Human body tracking by adaptive background models and mean-shift analysis. PETS 2003 2003.
    • (2003) PETS , pp. 2003
    • Porikli, F.1
  • 101
    • 0035766329 scopus 로고    scopus 로고
    • Moving object detection and tracking based on background subtraction
    • Liu Y, Ai H, Xu G. Moving object detection and tracking based on background subtraction. Proceedings of SPIE, Volume 4554, pp. 62-66, 2001.
    • (2001) Proceedings of SPIE , vol.4554 , pp. 62-66
    • Liu, Y.1    Ai, H.2    Xu, G.3
  • 102
    • 38049155563 scopus 로고    scopus 로고
    • 2D Person Tracking Using Kalman Filtering and Adaptive Background Learning in a Feedback Loop
    • CLEAR Workshop 2006
    • Pnevmatikakis A, Polymenakos L. 2D Person Tracking Using Kalman Filtering and Adaptive Background Learning in a Feedback Loop. CLEAR Workshop 2006, LNCS 4122, pp. 151-160, 2006.
    • (2006) LNCS , vol.4122 , pp. 151-160
    • Pnevmatikakis, A.1    Polymenakos, L.2
  • 104
    • 10444238335 scopus 로고    scopus 로고
    • Understanding background mixture models for foreground segmentation
    • Power P, Schoonees J. Understanding background mixture models for foreground segmentation. Imag Vision Comput 2002.
    • (2002) Imag Vision Comput
    • Power, P.1    Schoonees, J.2
  • 105
    • 70450198860 scopus 로고    scopus 로고
    • Learning background and shadow appearance with 3-d vehicle models
    • Leotta M, Mundy J. Learning background and shadow appearance with 3-d vehicle models. BMVC 2006 2006.
    • (2006) BMVC
    • Leotta, M.1    Mundy, J.2
  • 106
    • 84869471997 scopus 로고    scopus 로고
    • Motion Detection with Non-stationary Background
    • Ren Y, Chua C, Ho Y. Motion Detection with Non-stationary Background. ICIAP 2002 2002; 78-83.
    • (2002) ICIAP , pp. 78-83
    • Ren, Y.1    Chua, C.2    Ho, Y.3
  • 108
    • 34147146903 scopus 로고    scopus 로고
    • Better foreground segmentation for static cameras via new energy form and dynamic graph-cut
    • Sun Y. Better foreground segmentation for static cameras via new energy form and dynamic graph-cut. ICPR 2006 2006.
    • (2006) ICPR , pp. 2006
    • Sun, Y.1
  • 109
    • 21144431710 scopus 로고    scopus 로고
    • DETER: Detection of events for threat evaluation and recognition
    • Morellas V, Pavlidis I, Tsiamyrtzis P. DETER: detection of events for threat evaluation and recognition. Machine Vision Appl 2003; 15: 29-45.
    • (2003) Machine Vision Appl , vol.15 , pp. 29-45
    • Morellas, V.1    Pavlidis, I.2    Tsiamyrtzis, P.3
  • 110
    • 33646761996 scopus 로고    scopus 로고
    • Hierarchical representation of scenes using activity information
    • Landabaso J, Pardas M, Xu L. Hierarchical representation of scenes using activity information. ICASSP 2005 2005; 677-680.
    • (2005) ICASSP , pp. 677-680
    • Landabaso, J.1    Pardas, M.2    Xu, L.3
  • 111
    • 62249184793 scopus 로고    scopus 로고
    • Background Modeling from GMM likelihood combined with spatial and color coherency
    • Yang S, Hsu C. Background Modeling from GMM likelihood combined with spatial and color coherency. ICIP 2006 2006.
    • (2006) ICIP
    • Yang, S.1    Hsu, C.2
  • 112
    • 18144412408 scopus 로고    scopus 로고
    • Effective gaussian mixture learning for video background subtraction
    • Lee D. Effective gaussian mixture learning for video background subtraction. PAMI 2005 2005; 27: 827-832.
    • (2005) PAMI , Issue.27 , pp. 827-832
    • Lee, D.1
  • 113
    • 70349271571 scopus 로고    scopus 로고
    • Cooperative background modelling using multiple cameras towards human detection in smart-rooms
    • Landabaso J, Pardas M. Cooperative background modelling using multiple cameras towards human detection in smart-rooms. EUSIPCO 2006 2006.
    • (2006) EUSIPCO , pp. 2006
    • Landabaso, J.1    Pardas, M.2
  • 114
    • 80053169390 scopus 로고    scopus 로고
    • EMswitch: A multi-hypothesis approach to EM background modeling
    • Withagen P, Groen F, Schutte K. EMswitch: a multi-hypothesis approach to EM background modeling. ACIVS 2003 2003.
    • (2003) ACIVS , pp. 2003
    • Withagen, P.1    Groen, F.2    Schutte, K.3
  • 116
    • 77957953798 scopus 로고    scopus 로고
    • Improved gaussian mixtures for robust object detection by adaptive multi-background generation
    • Haque M, Murshed M, Paul M. Improved gaussian mixtures for robust object detection by adaptive multi-background generation. ICPR 2008 2008.
    • (2008) ICPR , pp. 2008
    • Haque, M.1    Murshed, M.2    Paul, M.3
  • 117
    • 60849121737 scopus 로고    scopus 로고
    • On stable dynamic background generation technique using gaussian mixture models for robust object detection
    • Haque M, Murshed M, Paul M. On stable dynamic background generation technique using gaussian mixture models for robust object detection. AVSS 2008 2008; 41-48.
    • (2008) AVSS , pp. 41-48
    • Haque, M.1    Murshed, M.2    Paul, M.3
  • 118
    • 33947660403 scopus 로고    scopus 로고
    • A moving object detection algorithm based on color information
    • Fang X, Xiong W, Hu B, Wang L. A moving object detection algorithm based on color information. IST 2006 J Phys 2006; 48: 384-387.
    • (2006) IST 2006 J Phys , vol.48 , pp. 384-387
    • Fang, X.1    Xiong, W.2    Hu, B.3    Wang, L.4
  • 119
    • 33846950342 scopus 로고    scopus 로고
    • Spatiotemporal blocks-based moving objects identification and tracking
    • Pokrajac D, Latecki L. Spatiotemporal blocks-based moving objects identification and tracking. VS-PETS 2003 2003; 70-77.
    • (2003) VS-PETS , pp. 70-77
    • Pokrajac, D.1    Latecki, L.2
  • 121
    • 0011920759 scopus 로고    scopus 로고
    • Technical Report 10, Intelligent Sensory Information Systems Group, University of Amsterdam, January 2000
    • Stijnman G, van den Boomgaard R. Background estimation in video sequences. Technical Report 10, Intelligent Sensory Information Systems Group, University of Amsterdam, January 2000.
    • Background Estimation In Video Sequences
    • Stijnman, G.1    van den Boomgaard, R.2
  • 122
    • 0001869554 scopus 로고    scopus 로고
    • Illumination-invariant motion detection using color mixture models
    • Xu M, Ellis T. Illumination-invariant motion detection using color mixture models. BMVA 2001; 163-172.
    • (2001) BMVA , pp. 163-172
    • Xu, M.1    Ellis, T.2
  • 123
  • 124
    • 62249184793 scopus 로고    scopus 로고
    • Background modeling from GMM likelihood combined with spatial and color coherency
    • Yang S, Hsu C. Background modeling from GMM likelihood combined with spatial and color coherency. ICIP 2006 2006; 2801-2804.
    • (2006) ICIP , pp. 2801-2804
    • Yang, S.1    Hsu, C.2
  • 125
    • 77249141628 scopus 로고    scopus 로고
    • Gaussian mixture model in improved HLS color space for human silhouette extraction
    • Setiawan N, Hong S, Kim J, Lee C. Gaussian mixture model in improved HLS color space for human silhouette extraction. ICAT 2006 2006; 732-741.
    • (2006) ICAT , pp. 732-741
    • Setiawan, N.1    Hong, S.2    Kim, J.3    Lee, C.4
  • 126
    • 33744935019 scopus 로고    scopus 로고
    • Background segmentation beyond RGB
    • Kristensen F, Nilsson P, Öwall V. Background segmentation beyond RGB. ACCV 2006 2006; 602-612.
    • (2006) ACCV , pp. 602-612
    • Kristensen, F.1    Nilsson, P.2    Öwall, V.3
  • 127
    • 34948862766 scopus 로고    scopus 로고
    • Hand Image Segmentation in Video Sequence by GMM: A comparative analysis
    • Ribeiro H, Gonzaga A. Hand Image Segmentation in Video Sequence by GMM: a comparative analysis. SIBGRAPI 2006 2006; 357-364.
    • (2006) SIBGRAPI , pp. 357-364
    • Ribeiro, H.1    Gonzaga, A.2
  • 128
    • 84964316524 scopus 로고    scopus 로고
    • A hierarchical approach to robust background subtraction using color and gradient information
    • Javed O, Shafique K, Shah M. A hierarchical approach to robust background subtraction using color and gradient information. WMVC 2002 2002; 22.
    • (2002) WMVC , pp. 22
    • Javed, O.1    Shafique, K.2    Shah, M.3
  • 129
    • 48149106918 scopus 로고    scopus 로고
    • Background modelling based on subpixel edges
    • Jain V, Kimia B, Mundy J. Background modelling based on subpixel edges. ICIP 2007 2007; 6: 321-324.
    • (2007) ICIP , Issue.6 , pp. 321-324
    • Jain, V.1    Kimia, B.2    Mundy, J.3
  • 130
    • 35348867399 scopus 로고    scopus 로고
    • Robust salient motion detection with complex background for real-time video surveillance
    • Tian Y, Hampapur A. Robust salient motion detection with complex background for real-time video surveillance. CVPR 2005 2005; 2: 30-35.
    • (2005) CVPR , Issue.2 , pp. 30-35
    • Tian, Y.1    Hampapur, A.2
  • 132
    • 71549125477 scopus 로고    scopus 로고
    • PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark
    • Silvestre D. Video surveillance using a time-of-flight camera. PhD thesis, Informatics and Mathematical Modelling, Technical University of Denmark, 2007.
    • (2007) Video Surveillance Using a Time-of-flight Camera
    • Silvestre, D.1
  • 134
    • 33846625520 scopus 로고    scopus 로고
    • Modeling background from compressed video
    • Wang W, Gao W, Yang J, Chen D. Modeling background from compressed video. ICCV 2005 2005; 161-168.
    • (2005) ICCV , pp. 161-168
    • Wang, W.1    Gao, W.2    Yang, J.3    Chen, D.4
  • 136
    • 70449375340 scopus 로고    scopus 로고
    • Video segmentation method with integrated multi-features based on GMM
    • International Conference on Digital Image Processing, March 2009
    • Zheng H, Liu Z, Wang X. Video segmentation method with integrated multi-features based on GMM. International Conference on Digital Image Processing, DIP 2009, pp. 62-66, March 2009.
    • DIP , pp. 62-66
    • Zheng, H.1    Liu, Z.2    Wang, X.3
  • 141
    • 34247281998 scopus 로고    scopus 로고
    • Accurate segmentation of moving objects in image sequence based on spatio-temporal information
    • Zhou D, Zhang H. Accurate segmentation of moving objects in image sequence based on spatio-temporal information. ICMA 2006 2006; 543-548.
    • (2006) ICMA , pp. 543-548
    • Zhou, D.1    Zhang, H.2
  • 142
    • 33744917805 scopus 로고    scopus 로고
    • Smooth foreground-background segmentation for video processing
    • Schindler K, Wang H. Smooth foreground-background segmentation for video processing. ACCV 2006 2006; 3852: 581-590.
    • (2006) ACCV , Issue.3852 , pp. 581-590
    • Schindler, K.1    Wang, H.2
  • 143
    • 3042732138 scopus 로고    scopus 로고
    • Hierarchical GMM to handle sharp changes in moving object detection
    • Sun Y, Yuan B. Hierarchical GMM to handle sharp changes in moving object detection. Electron Lett 2004; 40(13): 801-802.
    • (2004) Electron Lett , vol.40 , Issue.13 , pp. 801-802
    • Sun, Y.1    Yuan, B.2
  • 144
    • 78249277409 scopus 로고    scopus 로고
    • Hierarchical data structure for real time background subtraction
    • Park J, Tabb A., Kak A. Hierarchical data structure for real time background subtraction. ICIP 2006 2006; 1849-1852.
    • (2006) ICIP , pp. 1849-1852
    • Park, J.1    Tabb, A.2    Kak, A.3
  • 145
    • 34249105516 scopus 로고    scopus 로고
    • Efficient hierarchical method for background subtraction
    • Chen Y, Chen C, Huang C, Hung Y. Efficient hierarchical method for background subtraction. Patt Recog 2007; 40(10): 2706-2715.
    • (2007) Patt Recog , vol.40 , Issue.10 , pp. 2706-2715
    • Chen, Y.1    Chen, C.2    Huang, C.3    Hung, Y.4
  • 146
    • 33747177875 scopus 로고    scopus 로고
    • Background modeling using time dependent Markov random field with image pyramid
    • Zhou Y, Gong Y, Tao H. Background modeling using time dependent Markov random field with image pyramid. IEEE Motion 2005 2005.
    • (2005) IEEE Motion
    • Zhou, Y.1    Gong, Y.2    Tao, H.3
  • 147
    • 10044284084 scopus 로고    scopus 로고
    • Robust Background subtraction and maintenance
    • Zang Q, Klette R. Robust Background subtraction and maintenance. ICPR 2004 2004; 2: 90-93.
    • (2004) ICPR , Issue.2 , pp. 90-93
    • Zang, Q.1    Klette, R.2
  • 148
    • 28244432174 scopus 로고    scopus 로고
    • A hierarchical motion detection algorithm with the fusion of the two types of motion information
    • Zhong Q, Dai L, Song Y, Wang R. A hierarchical motion detection algorithm with the fusion of the two types of motion information. Patt Recogn Artificial Intellig 2005; 18(5): 552-557.
    • (2005) Patt Recogn Artificial Intellig , vol.18 , Issue.5 , pp. 552-557
    • Zhong, Q.1    Dai, L.2    Song, Y.3    Wang, R.4
  • 149
    • 84964402993 scopus 로고    scopus 로고
    • Integrated region- and pixelbased approach to background modeling
    • Cristani M, Bicego M, Murino V. Integrated region- and pixelbased approach to background modeling. MOTION 2002 2002; 3-8.
    • (2002) MOTION , pp. 3-8
    • Cristani, M.1    Bicego, M.2    Murino, V.3
  • 150
    • 67650257970 scopus 로고    scopus 로고
    • A spatial sampling mechanism for effective background subtraction
    • Cristani M, Murino V. A spatial sampling mechanism for effective background subtraction. VISAPP 2007 2007; 2: 403-410.
    • (2007) VISAPP , Issue.2 , pp. 403-410
    • Cristani, M.1    Murino, V.2
  • 151
    • 57549118981 scopus 로고    scopus 로고
    • Background subtraction with adaptive spatio-temporal neighborhood analysis
    • Cristani M, Murino V. Background subtraction with adaptive spatio-temporal neighborhood analysis. VISAPP 2008 2008.
    • (2008) VISAPP , pp. 2008
    • Cristani, M.1    Murino, V.2
  • 152
    • 2942637725 scopus 로고    scopus 로고
    • Background removal in vision servo system using gaussian mixture model framework
    • Su T, Hu J. Background removal in vision servo system using gaussian mixture model framework. ICNSC 2004 2004; 1: 70-75.
    • (2004) ICNSC , Issue.1 , pp. 70-75
    • Su, T.1    Hu, J.2
  • 153
    • 44849138192 scopus 로고    scopus 로고
    • Detection of temporarily static regions by processing video at different frame rates
    • Porikli F. Detection of temporarily static regions by processing video at different frame rates. AVSS 2007 2007; 236-241.
    • (2007) AVSS , pp. 236-241
    • Porikli, F.1
  • 154
    • 48149088137 scopus 로고    scopus 로고
    • Accurate dynamic scene model for moving object detection
    • Yang H, Tan Y, Tian J, Liu J. Accurate dynamic scene model for moving object detection. ICIP 2007 2007; 6: 157-160.
    • (2007) ICIP , Issue.6 , pp. 157-160
    • Yang, H.1    Tan, Y.2    Tian, J.3    Liu, J.4
  • 155
    • 84958699888 scopus 로고    scopus 로고
    • Bayesian background modeling for foreground detection
    • Porikli F, Tuzel O. Bayesian background modeling for foreground detection. VSSN 2005 2005; 28-55.
    • (2005) VSSN , pp. 28-55
    • Porikli, F.1    Tuzel, O.2
  • 157
    • 35348914680 scopus 로고    scopus 로고
    • Incorporating object tracking feedback into background maintenance framework
    • Taycher L, Fisher J, Darrell T. Incorporating object tracking feedback into background maintenance framework. IEEE Workshop on Motion and Video Computing, Volume 2, pp. 120-125, 2005.
    • (2005) IEEE Workshop On Motion and Video Computing , vol.2 , pp. 120-125
    • Taycher, L.1    Fisher, J.2    Darrell, T.3
  • 158
    • 48749109348 scopus 로고    scopus 로고
    • Improved post-processing for GMM based adaptive background modeling
    • Turdu D, Erdogan H. Improved post-processing for GMM based adaptive background modeling. ISCIS 2007 2007; 1-6.
    • (2007) ISCIS , pp. 1-6
    • Turdu, D.1    Erdogan, H.2
  • 159
    • 60849136333 scopus 로고    scopus 로고
    • Evaluation of Background Subtraction Algorithms with Post-processing
    • Parks D, Fels S. Evaluation of Background Subtraction Algorithms with Post-processing. AVSS 2008 2008.
    • (2008) AVSS
    • Parks, D.1    Fels, S.2
  • 162
    • 34247581806 scopus 로고    scopus 로고
    • Experiential sampling based foreground/background segmentation for video surveillance
    • Atrey P, Kumar V, Kumar A, Kankanhalli M. Experiential sampling based foreground/background segmentation for video surveillance. ICME 2006 2006; 1809-1812.
    • (2006) ICME , pp. 1809-1812
    • Atrey, P.1    Kumar, V.2    Kumar, A.3    Kankanhalli, M.4
  • 164
    • 0348231687 scopus 로고    scopus 로고
    • Tracking multiple vehicles using foreground, background and motion models
    • Magee D. Tracking multiple vehicles using foreground, background and motion models. Imag Vision Comput 2004; 22: 143-155.
    • (2004) Imag Vision Comput , vol.22 , pp. 143-155
    • Magee, D.1
  • 165
    • 34250356017 scopus 로고    scopus 로고
    • Model switching based adaptive background modeling approach
    • Zuo J, Pan Q, Liang Y, Zhang H, Cheng Y. Model switching based adaptive background modeling approach. Acta Automatica Sinica, 2007; 33(5): 467-473.
    • (2007) Acta Automatica Sinica , vol.33 , Issue.5 , pp. 467-473
    • Zuo, J.1    Pan, Q.2    Liang, Y.3    Zhang, H.4    Cheng, Y.5
  • 167
    • 52149097557 scopus 로고    scopus 로고
    • Fast background subtraction using improved gmm and graph cut
    • Tang Z, Miao Z. Fast background subtraction using improved gmm and graph cut. CISP 2008 2008.
    • (2008) CISP , pp. 2008
    • Tang, Z.1    Miao, Z.2
  • 168
    • 38049043516 scopus 로고    scopus 로고
    • Background pixel classification for motion segmentation using mean shift algorithm
    • Liang Y, Wang Z, Xu X., Cao X. Background pixel classification for motion segmentation using mean shift algorithm. ICMLC 2007 2007; 1693-1698.
    • (2007) ICMLC , pp. 1693-1698
    • Liang, Y.1    Wang, Z.2    Xu, X.3    Cao, X.4
  • 169
    • 67649097917 scopus 로고    scopus 로고
    • A moving objects detection algorithm based on improved background subtraction
    • Niu L, Jiang N. A moving objects detection algorithm based on improved background subtraction. ISDA 2008 2008; 3: 604-607.
    • (2008) ISDA , Issue.3 , pp. 604-607
    • Niu, L.1    Jiang, N.2
  • 170
    • 65149088608 scopus 로고    scopus 로고
    • An adaptive learning rate GMM for background extraction
    • Sheng Z, Cui X. An adaptive learning rate GMM for background extraction. Optoelectron Lett 2008; 4:(6): 460-463.
    • (2008) Optoelectron Lett , vol.4 , Issue.6 , pp. 460-463
    • Sheng, Z.1    Cui, X.2
  • 171
    • 67649105973 scopus 로고    scopus 로고
    • Hardware accelerator design for video segmentation with multi-modal background modeling
    • Jiang H, Ardo H, Owall V. Hardware accelerator design for video segmentation with multi-modal background modeling. ISCAS 2005 2005; 2: 1142-1145.
    • (2005) ISCAS , Issue.2 , pp. 1142-1145
    • Jiang, H.1    Ardo, H.2    Owall, V.3
  • 173
    • 35048870626 scopus 로고    scopus 로고
    • Classifiers combination for improved motion segmentation
    • Al-Mazeed A, Nixon M, Gunn S. Classifiers combination for improved motion segmentation. ICIAR 2004 2004; 363-371.
    • (2004) ICIAR , pp. 363-371
    • Al-Mazeed, A.1    Nixon, M.2    Gunn, S.3
  • 174
    • 33947660403 scopus 로고    scopus 로고
    • A moving object detection algorithm based on color information
    • Fang X, Xiong W, Hu B, Wang L. A moving object detection algorithm based on color information. J Phys 2006; 48: 384-387.
    • (2006) J Phys , vol.48 , pp. 384-387
    • Fang, X.1    Xiong, W.2    Hu, B.3    Wang, L.4
  • 177
    • 84898448793 scopus 로고    scopus 로고
    • Background subtraction in videos using bayesian learning with motion information
    • Jaikumar P, Singh A, Mitra S. Background subtraction in videos using bayesian learning with motion information. BMVC 2008 2008; 615-624.
    • (2008) BMVC , pp. 615-624
    • Jaikumar, P.1    Singh, A.2    Mitra, S.3
  • 178
    • 80053137674 scopus 로고    scopus 로고
    • Background subtraction in videos using Bayesian learning of gaussian mixture models
    • Singh A, Mitra S. Background subtraction in videos using Bayesian learning of gaussian mixture models. IEEE Transact Image Process 2009.
    • (2009) IEEE Transact Image Process
    • Singh, A.1    Mitra, S.2
  • 180
    • 84872721949 scopus 로고    scopus 로고
    • Large area video surveillance system with handoff scheme among multiple cameras
    • Lien C, Hua C, Jiang Y, Jang L. Large area video surveillance system with handoff scheme among multiple cameras. MVA 2009 2009.
    • (2009) MVA , pp. 2009
    • Lien, C.1    Hua, C.2    Jiang, Y.3    Jang, L.4
  • 181
    • 79952130170 scopus 로고    scopus 로고
    • Real-time traffic vehicle tracking based on improved MoG background extraction and motion segmentation
    • Qu Z, Yu M, Liu J. Real-time traffic vehicle tracking based on improved MoG background extraction and motion segmentation. ISSCAA 2010 2010; 676-680.
    • (2010) ISSCAA , pp. 676-680
    • Qu, Z.1    Yu, M.2    Liu, J.3
  • 182
    • 70350158235 scopus 로고    scopus 로고
    • A hybrid adaptive scheme based on selective gaussian modeling for real-time object detection
    • Al Najjar M, Ghosh S, Bayoumi M. A hybrid adaptive scheme based on selective gaussian modeling for real-time object detection. ISCAS 2009 2009; 936-939.
    • (2009) ISCAS , pp. 936-939
    • Al-Najjar, M.1    Ghosh, S.2    Bayoumi, M.3
  • 183
    • 71049174884 scopus 로고    scopus 로고
    • A robust moving objects detection algorithm based on gaussian mixture model
    • Xuehua S, Yu C, Jianfeng G, Jingzhu C. A robust moving objects detection algorithm based on gaussian mixture model. ITSC 2009 2009; 1: 566-569.
    • (2009) ITSC , Issue.1 , pp. 566-569
    • Xuehua, S.1    Yu, C.2    Jianfeng, G.3    Jingzhu, C.4
  • 185
    • 65449128901 scopus 로고    scopus 로고
    • Spatiotemporal background modeling based on adaptive mixture of gaussians
    • Wang Y, Liang Y, Pan Q, Cheng Y, Zhao C. Spatiotemporal background modeling based on adaptive mixture of gaussians. Acta Automatica Sinica 2009; 35(4).
    • (2009) Acta Automatica Sinica , vol.35 , Issue.4
    • Wang, Y.1    Liang, Y.2    Pan, Q.3    Cheng, Y.4    Zhao, C.5
  • 186
    • 62449270751 scopus 로고    scopus 로고
    • Adaptive background modeling based on mixture gaussian model and frame subtraction
    • Liu X, Liu H, Qiang Z, Geng X. Adaptive background modeling based on mixture gaussian model and frame subtraction. J Image Graph 2008.
    • (2008) J Image Graph
    • Liu, X.1    Liu, H.2    Qiang, Z.3    Geng, X.4
  • 187
    • 78049386834 scopus 로고    scopus 로고
    • Robust background modeling via standard variance feature
    • Zhong B, Yao H, Liu S. Robust background modeling via standard variance feature. ICASSP 2010 2010.
    • (2010) ICASSP , pp. 2010
    • Zhong, B.1    Yao, H.2    Liu, S.3
  • 188
    • 79953887933 scopus 로고    scopus 로고
    • A novel GMM-Based motion segmentation method for complex background
    • Fazli S, Pour H, Bouzari H. A novel GMM-Based motion segmentation method for complex background. GCC 2009 2009.
    • (2009) GCC , pp. 2009
    • Fazli, S.1    Pour, H.2    Bouzari, H.3
  • 189
    • 84873304223 scopus 로고    scopus 로고
    • Multiple object tracking using improved GMM-based motion segmentation
    • Fazli S, Pour H, Bouzari H. Multiple object tracking using improved GMM-based motion segmentation. ECTI-CON 2009 2009.
    • (2009) ECTI-CON , pp. 2009
    • Fazli, S.1    Pour, H.2    Bouzari, H.3
  • 190
    • 79958110998 scopus 로고    scopus 로고
    • An improved method of target detection based on gaussian mixture model and average background method
    • Zou W, Zhao D, Sun G, Yu Z, Wang Y. An improved method of target detection based on gaussian mixture model and average background method. SPPRA 2011 2011.
    • (2011) SPPRA , pp. 2011
    • Zou, W.1    Zhao, D.2    Sun, G.3    Yu, Z.4    Wang, Y.5
  • 192
    • 80053157144 scopus 로고    scopus 로고
    • Background subtraction in varying illuminations using an ensemble based on an enlarged feature set
    • Klare B, Sarka S. Background subtraction in varying illuminations using an ensemble based on an enlarged feature set. OTCBVS 2009 2009.
    • (2009) OTCBVS , pp. 2009
    • Klare, B.1    Sarka, S.2
  • 194
    • 67650468172 scopus 로고    scopus 로고
    • Object detection based on fast and lowmemory hybrid background model
    • Shimada A, Taniguchi R. Object detection based on fast and lowmemory hybrid background model. IEEJ Transact Electron Inform Syst 2009; 129-C(5): 846-852.
    • (2009) IEEJ Transact Electron Inform Syst , vol.129 C , Issue.5 , pp. 846-852
    • Shimada, A.1    Taniguchi, R.2
  • 196
    • 77249112228 scopus 로고    scopus 로고
    • Adaptively Adjusted Gaussian Mixture Models for Surveillance Applications
    • LNCS
    • Huang T, Fang X, Qiu J, Ikenaga T. Adaptively Adjusted Gaussian Mixture Models for Surveillance Applications. MMM 2010, LNCS 5916, pp. 689-694, 2010.
    • (2010) MMM 2010 , vol.5916 , pp. 689-694
    • Huang, T.1    Fang, X.2    Qiu, J.3    Ikenaga, T.4
  • 197
    • 77950910952 scopus 로고    scopus 로고
    • High level feedback for foreground detection
    • Wang W, Qian H., Chen P, Chen S. High level feedback for foreground detection. YC-ICT 2009 2009; 323-326.
    • (2009) YC-ICT , pp. 323-326
    • Wang, W.1    Qian, H.2    Chen, P.3    Chen, S.4
  • 198
    • 78149355623 scopus 로고    scopus 로고
    • Video background subtraction using improved adaptive-k gaussian mixture model
    • Zhou H, Zhang X, Gao Y, Yu P. Video background subtraction using improved adaptive-k gaussian mixture model. ICACTE 2010 2010.
    • (2010) ICACTE , pp. 2010
    • Zhou, H.1    Zhang, X.2    Gao, Y.3    Yu, P.4
  • 199
    • 62949204444 scopus 로고    scopus 로고
    • An improved mixture gaussian models to detect moving object under real-time complex background
    • Ju S, Chen X, Xu G. An improved mixture gaussian models to detect moving object under real-time complex background. ICC 2008, pages 730-734, 2008.
    • (2008) ICC , pp. 730-734
    • Ju, S.1    Chen, X.2    Xu, G.3
  • 201
    • 80053162342 scopus 로고    scopus 로고
    • Background subtraction in videos using adaptive mixture models with split-andmerge operation
    • Singh A, Jaikumar P, Mitra S, Joshi M, Banerjee A. Background subtraction in videos using adaptive mixture models with split-andmerge operation. J Nation Academ Sci 2011.
    • (2011) J Nation Academ Sci
    • Singh, A.1    Jaikumar, P.2    Mitra, S.3    Joshi, M.4    Banerjee, A.5
  • 202
    • 70449637413 scopus 로고    scopus 로고
    • Adaptive background update based on mixture models of gaussian
    • Wang F, Dai S. Adaptive background update based on mixture models of gaussian. ICIA 2009 2009.
    • (2009) ICIA , pp. 2009
    • Wang, F.1    Dai, S.2
  • 204
    • 51849165711 scopus 로고    scopus 로고
    • A robust foreground segmentation method by temporal averaging multiple video frames
    • Guo H, Dou Y, Tian T, Zhou J, Yu S. A robust foreground segmentation method by temporal averaging multiple video frames. ICALIP 2008 2008; 878-882.
    • (2008) ICALIP , pp. 878-882
    • Guo, H.1    Dou, Y.2    Tian, T.3    Zhou, J.4    Yu, S.5
  • 205
    • 85038502290 scopus 로고    scopus 로고
    • Master Thesis, Department of Electrical Engineering, Linköpings University, Sweden
    • Molin J. Foreground segmentation of moving objects. Master Thesis, Department of Electrical Engineering, Linköpings University, Sweden, 2010.
    • (2010) Foreground Segmentation of Moving Objects
    • Molin, J.1
  • 206
    • 77954637760 scopus 로고    scopus 로고
    • A traffic video background extraction algorithm based on image content sensitivity
    • Qin B, Wang J, Gao J, Pang T, Su F. A traffic video background extraction algorithm based on image content sensitivity. ICSI 2010 2010; 603-610.
    • (2010) ICSI , pp. 603-610
    • Qin, B.1    Wang, J.2    Gao, J.3    Pang, T.4    Su, F.5
  • 207
    • 79952437140 scopus 로고    scopus 로고
    • Online background learning for illumination-robust foreground detection
    • Li D, Dawei L, Goodman E. Online background learning for illumination-robust foreground detection. ICARCV 2010 2010; 1093.
    • (2010) ICARCV , pp. 1093
    • Li, D.1    Dawei, L.2    Goodman, E.3
  • 208
    • 80053937628 scopus 로고    scopus 로고
    • Regularized Online Mixture of Gaussians for background subtraction
    • Wang H, Miller P. Regularized Online Mixture of Gaussians for background subtraction. AVSS 2011 2011.
    • (2011) AVSS , pp. 2011
    • Wang, H.1    Miller, P.2
  • 209
    • 77951969969 scopus 로고    scopus 로고
    • Fast Background subtraction algorithm using two-level sampling and silhouette detection
    • Lee D, Ahn J, Kim C. Fast Background subtraction algorithm using two-level sampling and silhouette detection. ICIP 2009 2009; 3177-3180.
    • (2009) ICIP , pp. 3177-3180
    • Lee, D.1    Ahn, J.2    Kim, C.3
  • 210
    • 32544460952 scopus 로고    scopus 로고
    • Update the GMMs via adaptive Kalman filtering
    • Han B, Lin X. Update the GMMs via adaptive Kalman filtering. Proceedings of SPIE, Volume 5960, Issue 3, pp. 1506-1515, 2005.
    • (2005) Proceedings of SPIE , vol.5960 , Issue.3 , pp. 1506-1515
    • Han, B.1    Lin, X.2
  • 211
    • 72449131587 scopus 로고    scopus 로고
    • Object-wise multilayer background ordering for public area surveillance
    • Park D, Byun H. Object-wise multilayer background ordering for public area surveillance. AVSS 2009 2009.
    • (2009) AVSS , pp. 2009
    • Park, D.1    Byun, H.2
  • 212
    • 70449372723 scopus 로고    scopus 로고
    • Real-time pedestrian detection based on improved gaussian mixture model
    • Li J, Shao C, Xu W, Dong C. Real-time pedestrian detection based on improved gaussian mixture model. ICMTMA 2009 2009; 3: 269-272.
    • (2009) ICMTMA , Issue.3 , pp. 269-272
    • Li, J.1    Shao, C.2    Xu, W.3    Dong, C.4
  • 213
    • 67049168031 scopus 로고    scopus 로고
    • Motion detection in complex and dynamic backgrounds
    • Park D, Kim J, Kim J, Cho S, Chung S. Motion detection in complex and dynamic backgrounds. PSIVT 2006 2006; 545-552.
    • (2006) PSIVT , pp. 545-552
    • Park, D.1    Kim, J.2    Kim, J.3    Cho, S.4    Chung, S.5
  • 214
    • 0033680842 scopus 로고    scopus 로고
    • Scene modeling for wide area surveillance and image synthesis
    • Mittal A, Huttenlocher D. Scene modeling for wide area surveillance and image synthesis. CVPR 2000 2000; 2: 160-167.
    • (2000) CVPR , Issue.2 , pp. 160-167
    • Mittal, A.1    Huttenlocher, D.2
  • 216
    • 77951957548 scopus 로고    scopus 로고
    • GMM-based efficient foreground detection with adaptive region update
    • Li H, Achim A, Bull D. GMM-based efficient foreground detection with adaptive region update. ICIP 2009 2009; 3181-3184.
    • (2009) ICIP , pp. 3181-3184
    • Li, H.1    Achim, A.2    Bull, D.3
  • 218
    • 77956329028 scopus 로고    scopus 로고
    • Real-time moving object detection in video sequences using spatio-temporal adaptive gaussian mixture models
    • Quast K, Obermann M, Kaup A. Real-time moving object detection in video sequences using spatio-temporal adaptive gaussian mixture models. VISAPP 2010 2010; 413-418.
    • (2010) VISAPP , pp. 413-418
    • Quast, K.1    Obermann, M.2    Kaup, A.3
  • 219
    • 84858964092 scopus 로고    scopus 로고
    • Localized adaptive learning of mixture of gaussians models for background extraction
    • Shah M, Deng J, Woodford B. Localized adaptive learning of mixture of gaussians models for background extraction. ICVNZ 2010 2010.
    • (2010) ICVNZ
    • Shah, M.1    Deng, J.2    Woodford, B.3
  • 221
    • 79251576159 scopus 로고    scopus 로고
    • AUTO GMM-SAMT: An automatic object tracking system for video surveillance in traffic scenarios
    • Article ID 814285 14
    • Quast K, Kaup A. AUTO GMM-SAMT: An automatic object tracking system for video surveillance in traffic scenarios. EURASIP J Image Video Process 20011; 2011: Article ID 814285 14.
    • (2011) EURASIP J Image Video Process , pp. 20011
    • Quast, K.1    Kaup, A.2
  • 222
    • 79951818849 scopus 로고    scopus 로고
    • Regularized background adaptation: A novel learning rate control scheme for gaussian mixture modeling
    • Lin H, Chuang J, Liu T. Regularized background adaptation: A novel learning rate control scheme for gaussian mixture modeling. IEEE Transact Image Process 2011.
    • (2011) IEEE Transact Image Process
    • Lin, H.1    Chuang, J.2    Liu, T.3
  • 223
    • 79952225799 scopus 로고    scopus 로고
    • Robust moving object detection and shadow removing based on improved gaussian model and gradient information
    • Bin Z, Liu Y. Robust moving object detection and shadow removing based on improved gaussian model and gradient information. ICMT 2010 2010.
    • (2010) ICMT , pp. 2010
    • Bin, Z.1    Liu, Y.2
  • 224
    • 79951759214 scopus 로고    scopus 로고
    • Conference on Broadband Network and Multimedia Technology, IC-BNMT2010, Beijing, China, October 2010
    • Zhao L, He X. Adaptive gaussian mixture learning for moving object detection. Conference on Broadband Network and Multimedia Technology, IC-BNMT2010, pages 1176-1180, Beijing, China, October 2010.
    • Adaptive Gaussian Mixture Learning For Moving Object Detection , pp. 1176-1180
    • Zhao, L.1    He, X.2
  • 225
    • 78650508683 scopus 로고    scopus 로고
    • An improved Gaussian mixture background model with real-time adjustment of learning rate
    • Li Y, Tian H, Zhang Y. An improved Gaussian mixture background model with real-time adjustment of learning rate. ICINA 2010 2010; ((1): 1512-1515.
    • (2010) ICINA , Issue.1 , pp. 1512-1515
    • Li, Y.1    Tian, H.2    Zhang, Y.3
  • 226
    • 77951947644 scopus 로고    scopus 로고
    • A global probabilistic framework for the foreground, background and shadow classification task
    • Landabaso J, Pujol J, Montserrat T, Marimon D, Civit J, Escoda O. A global probabilistic framework for the foreground, background and shadow classification task. ICIP 2009 2009; 3189-3192.
    • (2009) ICIP , pp. 3189-3192
    • Landabaso, J.1    Pujol, J.2    Montserrat, T.3    Marimon, D.4    Civit, J.5    Escoda, O.6
  • 227
    • 70350441864 scopus 로고    scopus 로고
    • Adaptive foreground/background segmentation using multiview silhouette fusion
    • LNCS
    • Feldmann T, Diesselberg L, Worner A. Adaptive foreground/background segmentation using multiview silhouette fusion. DAGM 2009 2009; LNCS 5748, 522-531.
    • (2009) DAGM 2009 , vol.5748 , pp. 522-531
    • Feldmann, T.1    Diesselberg, L.2    Worner, A.3
  • 229
    • 78651496750 scopus 로고    scopus 로고
    • A fast convergent Gaussian mixture model in moving object detection with shadow elimination
    • Tian Y, Wang X. A fast convergent Gaussian mixture model in moving object detection with shadow elimination. ICEEE 2010 2010.
    • (2010) ICEEE
    • Tian, Y.1    Wang, X.2
  • 230
    • 78049410993 scopus 로고    scopus 로고
    • Efficient Foreground Layer Extraction in Video, PCM 2010, Part I
    • Li Z., Zhong L., Liu Y., Efficient Foreground Layer Extraction in Video, PCM 2010, Part I, LNCS 6297, pages 319-329, 2010.
    • (2010) LNCS , vol.6297 , pp. 319-329
    • Li, Z.1    Zhong, L.2    Liu, Y.3
  • 231
    • 78149480469 scopus 로고    scopus 로고
    • Segmenting video foreground using a multi-class MRF
    • Dickinson P, Hunter A, Appiah K. Segmenting video foreground using a multi-class MRF. ICPR 2010 2010; 1848-1851.
    • (2010) ICPR , pp. 1848-1851
    • Dickinson, P.1    Hunter, A.2    Appiah, K.3
  • 232
    • 78650533534 scopus 로고    scopus 로고
    • Moving target detection in complex scenes based on spatio-temporal domain analysis
    • Zhang X, Zhou J. Moving target detection in complex scenes based on spatio-temporal domain analysis. CISP 2010 2010 1520-1523.
    • (2010) CISP , pp. 1520-1523
    • Zhang, X.1    Zhou, J.2
  • 234
    • 77957970489 scopus 로고    scopus 로고
    • Hierarchical background subtraction using local pixel clustering
    • Zhong B, Yao H, Shan S, Chen X, Gao W. Hierarchical background subtraction using local pixel clustering. ICPR 2008 2008.
    • (2008) ICPR
    • Zhong, B.1    Yao, H.2    Shan, S.3    Chen, X.4    Gao, W.5
  • 235
    • 77951947118 scopus 로고    scopus 로고
    • Multi-resolution background subtraction for dynamic scenes
    • Zhong B, Liu S, Yao H, Zhang B. Multi-resolution background subtraction for dynamic scenes. ICIP 2009 2009; 3193-3196.
    • (2009) ICIP , pp. 3193-3196
    • Zhong, B.1    Liu, S.2    Yao, H.3    Zhang, B.4
  • 236
    • 79951608544 scopus 로고    scopus 로고
    • A Hierachical approach for background modeling and moving objects detection
    • Yang J, Wang J, Lu H. A Hierachical approach for background modeling and moving objects detection. Int J Control Automat Syst, 2010; 940-947.
    • (2010) Int J Control Automat Syst , pp. 940-947
    • Yang, J.1    Wang, J.2    Lu, H.3
  • 237
    • 33846818769 scopus 로고    scopus 로고
    • Robust Background subtraction with shadow and highlight removal for indoor surveillance
    • Hu J, Su T. Robust Background subtraction with shadow and highlight removal for indoor surveillance. J Advan Signal Process 2007; 2007: 1-14.
    • (2007) J Advan Signal Process , pp. 1-14
    • Hu, J.1    Su, T.2
  • 238
    • 78651104166 scopus 로고    scopus 로고
    • Memory-based gaussian mixture modeling for moving object detection in indoor scene with sudden partial changes
    • Qi Y, Wang Y. Memory-based gaussian mixture modeling for moving object detection in indoor scene with sudden partial changes. ICSP 2010 2010; 752-755.
    • (2010) ICSP , pp. 752-755
    • Qi, Y.1    Wang, Y.2
  • 239
    • 70449642967 scopus 로고    scopus 로고
    • Foreground segmentation for static video via multi-core and multi-modal graph cut
    • Chang L, Hsu W. Foreground segmentation for static video via multi-core and multi-modal graph cut. ICME 2009 2009.
    • (2009) ICME
    • Chang, L.1    Hsu, W.2
  • 240
    • 78049367483 scopus 로고    scopus 로고
    • A Multi-layer scene model for video surveillance applications, pacific rim conference on multimedia
    • Part I, LNCS
    • Huang C, Wu R. A Multi-layer scene model for video surveillance applications, pacific rim conference on multimedia. PCM 2010 2010; Part I, LNCS 6297: 68-79.
    • (2010) PCM 2010 , vol.6297 , pp. 68-79
    • Huang, C.1    Wu, R.2
  • 242
    • 0035555922 scopus 로고    scopus 로고
    • International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, August 2001
    • Nadimi S, Bhanu B. Multistrategy fusion using mixture model for moving object detection. International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 317-322, Baden-Baden, Germany, August 2001.
    • Multistrategy Fusion Using Mixture Model For Moving Object Detection , pp. 317-322
    • Nadimi, S.1    Bhanu, B.2
  • 244
    • 73849113735 scopus 로고    scopus 로고
    • Multispectral object segmentation and retrieval in surveillance video
    • Conaire C, O'Connor N, Cooke E, Smeaton A. Multispectral object segmentation and retrieval in surveillance video. ICIP 2006 2006; 2381-2384.
    • (2006) ICIP , pp. 2381-2384
    • Conaire, C.1    O'Connor, N.2    Cooke, E.3    Smeaton, A.4
  • 246
    • 79959394941 scopus 로고    scopus 로고
    • A closed-loop background subtraction approach for multiple models based multiple objects tracking
    • Shao J, Jia Z, Li Z, Liu F, Zhao J, Peng P. A closed-loop background subtraction approach for multiple models based multiple objects tracking. J Multimedia 2011; 6(1): 33-38.
    • (2011) J Multimedia , vol.6 , Issue.1 , pp. 33-38
    • Shao, J.1    Jia, Z.2    Li, Z.3    Liu, F.4    Zhao, J.5    Peng, P.6
  • 247
    • 80053165372 scopus 로고    scopus 로고
    • A robust hybrid movement detection method in dynamic background
    • Fazli S, Pour H, Bouzari H. A robust hybrid movement detection method in dynamic background. ECTI-CON 2009 2009; 1134-1137.
    • (2009) ECTI-CON , pp. 1134-1137
    • Fazli, S.1    Pour, H.2    Bouzari, H.3
  • 248
    • 62449207849 scopus 로고    scopus 로고
    • Video Segmentation of Illuminance Abrupt Variation Based on MOGs and Gradient Information
    • Yuan C, Wang C, Zhang X, Liu Y. Video Segmentation of Illuminance Abrupt Variation Based on MOGs and Gradient Information. J Image Graph 2007.
    • (2007) J Image Graph
    • Yuan, C.1    Wang, C.2    Zhang, X.3    Liu, Y.4
  • 249
    • 78349247502 scopus 로고    scopus 로고
    • Moving object detection based on gaussian mixture model within the quotient space hierarchical theory, rough set and knowledge technology
    • LNAI
    • Zhang Y, Bai Y, Zhao S. Moving object detection based on gaussian mixture model within the quotient space hierarchical theory, rough set and knowledge technology. RSKT 2010 2010; LNAI 6401: 772-777.
    • (2010) RSKT 2010 , vol.6401 , pp. 772-777
    • Zhang, Y.1    Bai, Y.2    Zhao, S.3
  • 250
    • 80051658459 scopus 로고    scopus 로고
    • Detecting moving objects from dynamic background with shadow removal
    • Wang S, Su T, Lai S. Detecting moving objects from dynamic background with shadow removal. ICASSP 2011 2011.
    • (2011) ICASSP
    • Wang, S.1    Su, T.2    Lai, S.3
  • 252
    • 80053157564 scopus 로고    scopus 로고
    • Improvement on adaptive mixture Gaussian background model
    • Li Q, Zhang Y. Improvement on adaptive mixture Gaussian background model. Computer Appl 2007; 7: 2014-2017.
    • (2007) Computer Appl , vol.7 , pp. 2014-2017
    • Li, Q.1    Zhang, Y.2
  • 253
    • 70349669392 scopus 로고    scopus 로고
    • Moving Object Detection Based on Edged Mixture Gaussian Models
    • Li Y, Xiong C, Yin Y, Liu L. Moving Object Detection Based on Edged Mixture Gaussian Models. ISA 2009 2009; 1-5.
    • (2009) ISA , pp. 1-5
    • Li, Y.1    Xiong, C.2    Yin, Y.3    Liu, L.4
  • 254
    • 80053168838 scopus 로고    scopus 로고
    • Robust Background Segmentation using Background Models for Surveillance Application
    • Huang T, Qiu J, Sakayori T, Ikenaga T. Robust Background Segmentation using Background Models for Surveillance Application. MVA 2009 2009; 402-405.
    • (2009) MVA , pp. 402-405
    • Huang, T.1    Qiu, J.2    Sakayori, T.3    Ikenaga, T.4
  • 255
    • 54049089060 scopus 로고    scopus 로고
    • A pixel-wise local information-based background subtraction approach
    • Wei S, Jiang S, Huang Q. A pixel-wise local information-based background subtraction approach. ICME 2008 2008; 1501-1504.
    • (2008) ICME , pp. 1501-1504
    • Wei, S.1    Jiang, S.2    Huang, Q.3
  • 256
    • 78651088261 scopus 로고    scopus 로고
    • Background subtraction based on phase and distance transform under sudden illumination change
    • Xue G, Sun J, Song L. Background subtraction based on phase and distance transform under sudden illumination change. ICIP 2010 2010; 3465-3468.
    • (2010) ICIP , pp. 3465-3468
    • Xue, G.1    Sun, J.2    Song, L.3
  • 257
    • 43049162438 scopus 로고    scopus 로고
    • Modeling background and segmenting moving objects from compressed video
    • Wang W, Yang J, Gao W. Modeling background and segmenting moving objects from compressed video. IEEE Transact Circuits Syst Video Technol 2008; 18(5): 670-681.
    • (2008) IEEE Transact Circuits Syst Video Technol , vol.18 , Issue.5 , pp. 670-681
    • Wang, W.1    Yang, J.2    Gao, W.3
  • 258
    • 80053157968 scopus 로고    scopus 로고
    • Moving object detection using clausius entropy and apdative gaussian mixture model
    • Park J, Lee G, Toan N, Cho W, Park S. Moving object detection using clausius entropy and apdative gaussian mixture model. J Inst Electron Engineer Korea 2010; 47(1).
    • (2010) J Inst Electron Engineer Korea , vol.47 , Issue.1
    • Park, J.1    Lee, G.2    Toan, N.3    Cho, W.4    Park, S.5
  • 259
    • 78249276885 scopus 로고    scopus 로고
    • Moving object detection based on clausius entropy
    • Park J, Lee G, Toan N, Cho W, Park S. Moving object detection based on clausius entropy. CIT 2010 2010; 517-521.
    • (2010) CIT , pp. 517-521
    • Park, J.1    Lee, G.2    Toan, N.3    Cho, W.4    Park, S.5
  • 261
    • 80053169744 scopus 로고    scopus 로고
    • Mixture of gaussians exploiting histograms of oriented gradients for background subtraction
    • Fabián T. Mixture of gaussians exploiting histograms of oriented gradients for background subtraction. ISVC 2010 2010.
    • (2010) ISVC
    • Fabián, T.1
  • 262
    • 77956212104 scopus 로고    scopus 로고
    • Robust motion detection using histogram of oriented gradients for illumination variations
    • Hu L, Liu W, Li B, Xing W. Robust motion detection using histogram of oriented gradients for illumination variations. ICIMA 2010 2010; 2, 443-447.
    • (2010) ICIMA , Issue.2 , pp. 443-447
    • Hu, L.1    Liu, W.2    Li, B.3    Xing, W.4
  • 263
    • 84910607097 scopus 로고    scopus 로고
    • Robust detection and tracking of multiple objects in cluttered scenes
    • Xu L. Robust detection and tracking of multiple objects in cluttered scenes. BMVA 2004 2004.
    • (2004) BMVA
    • Xu, L.1
  • 264
    • 55849125443 scopus 로고    scopus 로고
    • Object segmentation using background modelling and cascaded change detection
    • Teixeira L, Cardoso J, Corte-Real L. Object segmentation using background modelling and cascaded change detection. J Multimedia 2007; 2(5): 55-65.
    • (2007) J Multimedia , vol.2 , Issue.5 , pp. 55-65
    • Teixeira, L.1    Cardoso, J.2    Corte-Real, L.3
  • 265
    • 34547307389 scopus 로고    scopus 로고
    • Independent moving object detection using a color background model
    • Campbell-West F, Miller P, Wang H. Independent moving object detection using a color background model. AVSS 2006 2006.
    • (2006) AVSS
    • Campbell-West, F.1    Miller, P.2    Wang, H.3
  • 267
    • 34047220860 scopus 로고    scopus 로고
    • Joint correspondence and background modeling based on tree dynamic programming
    • Rao N, Di H, Xu G. Joint correspondence and background modeling based on tree dynamic programming. ICPR 2006 2006, 425-428.
    • (2006) ICPR , pp. 425-428
    • Rao, N.1    Di, H.2    Xu, G.3
  • 268
    • 34547517937 scopus 로고    scopus 로고
    • Adaptive foreground object extraction for real-time video surveillance with lighting variations
    • Zen H, Lai S. Adaptive foreground object extraction for real-time video surveillance with lighting variations. ICASSP 2007 2007; 1: 1201-1204.
    • (2007) ICASSP , Issue.1 , pp. 1201-1204
    • Zen, H.1    Lai, S.2
  • 272
    • 0033698283 scopus 로고    scopus 로고
    • Error analysis of background adaption
    • Gao X, Boult T, Coetzee F, Ramesh V. Error analysis of background adaption. CVPR 2000 2000; 1: 503-510.
    • (2000) CVPR , Issue.1 , pp. 503-510
    • Gao, X.1    Boult, T.2    Coetzee, F.3    Ramesh, V.4
  • 274
    • 50849105799 scopus 로고    scopus 로고
    • Background subtraction for temporally irregular dynamic textures
    • Dalley G, Migdal J, Grimson W. Background subtraction for temporally irregular dynamic textures. WACV 2008 2008.
    • (2008) WACV
    • Dalley, G.1    Migdal, J.2    Grimson, W.3
  • 275
    • 70349302020 scopus 로고    scopus 로고
    • Background Modeling for Detecting Move-then-stop Arbitrary-long Time Video Objects
    • Cai X, Ali F, Stipidis E. Background Modeling for Detecting Move-then-stop Arbitrary-long Time Video Objects. WIAMIS 2009 2009.
    • (2009) WIAMIS
    • Cai, X.1    Ali, F.2    Stipidis, E.3
  • 277
    • 80053137673 scopus 로고    scopus 로고
    • Background subtraction in video using recursive mixture models, spatio-temporal filtering and shadow removal
    • Chen Z, Pears N, Freeman M, Austin J. Background subtraction in video using recursive mixture models, spatio-temporal filtering and shadow removal. ISVC 2009 2009.
    • (2009) ISVC
    • Chen, Z.1    Pears, N.2    Freeman, M.3    Austin, J.4
  • 278
    • 78049280650 scopus 로고    scopus 로고
    • Surveillance Video Stream Analysis Using Adaptive Background Model and Object Recognition, ICCVG 2010, Part I
    • Forczmanski P., Seweryn M. Surveillance Video Stream Analysis Using Adaptive Background Model and Object Recognition, ICCVG 2010, Part I, LNCS 6374, pages 114-121, 2010.
    • (2010) LNCS , vol.6374 , pp. 114-121
    • Forczmanski, P.1    Seweryn, M.2
  • 280
    • 79951641742 scopus 로고    scopus 로고
    • The improved moving object detection and shadow removing algorithms for video surveillance
    • Liu Y, Bin Z. The improved moving object detection and shadow removing algorithms for video surveillance. CISE 2010 2010.
    • (2010) CISE
    • Liu, Y.1    Bin, Z.2
  • 282
    • 41149156377 scopus 로고    scopus 로고
    • A new strategy based on adaptive mixture of Gaussians for real-time moving objects segmentation, Real Time image Processing
    • Cuevas C, Salgado L, Garcia N. A new strategy based on adaptive mixture of Gaussians for real-time moving objects segmentation, Real Time image Processing. SPIE 2008 2008; 6811.
    • (2008) SPIE , pp. 6811
    • Cuevas, C.1    Salgado, L.2    Garcia, N.3
  • 284
    • 33751030556 scopus 로고    scopus 로고
    • Automatic statistical object detection for visual surveillance
    • Tavakkoli A, Nicolescu M.G, Bebis G. Automatic statistical object detection for visual surveillance. SSIAI 2006 2006.
    • (2006) SSIAI
    • Tavakkoli, A.1    Nicolescu, M.G.2    Bebis, G.3
  • 285
    • 34247361012 scopus 로고    scopus 로고
    • A Fast algorithm for background tracking in video surveillance, using nonparametric kernel density estimation
    • April 2005
    • Ianasi C, Gui V, Toma C, Pescaru D. A Fast algorithm for background tracking in video surveillance, using nonparametric kernel density estimation. facta universitatis, series: electronics and energetics, volume 18, no. 1, pages 127-144, April 2005.
    • Facta Universitatis, Series: Electronics and Energetics , vol.18 , Issue.1 , pp. 127-144
    • Ianasi, C.1    Gui, V.2    Toma, C.3    Pescaru, D.4
  • 286
    • 38149077423 scopus 로고    scopus 로고
    • Non-parametric background and shadow modeling for object detection
    • Tanaka T, Shimada A, Arita D, Taniguchi R. Non-parametric background and shadow modeling for object detection. ACCV 2007 2007; 159-168.
    • (2007) ACCV , pp. 159-168
    • Tanaka, T.1    Shimada, A.2    Arita, D.3    Taniguchi, R.4
  • 287
    • 44849097817 scopus 로고    scopus 로고
    • A fast algorithm for adaptive background model construction using parzen density estimation
    • Tanaka T, Shimada A, Arita D, Taniguchi R. A fast algorithm for adaptive background model construction using parzen density estimation. AVSS 2007 2007; 528-533.
    • (2007) AVSS , pp. 528-533
    • Tanaka, T.1    Shimada, A.2    Arita, D.3    Taniguchi, R.4
  • 288
    • 33644870377 scopus 로고    scopus 로고
    • Efficient adaptive density estimation per image pixel for the task of background subtraction
    • Zivkovic Z. Efficient adaptive density estimation per image pixel for the task of background subtraction. Patt Recogn Lett 2006; 27(7): 773-780.
    • (2006) Patt Recogn Lett , vol.27 , Issue.7 , pp. 773-780
    • Zivkovic, Z.1
  • 289
    • 78649869125 scopus 로고    scopus 로고
    • Background estimation and adaptation model with light-change removal for heavily down-sampled video surveillance signals
    • Cvetkovic S, Bakker P, Schirris J, de With P. Background estimation and adaptation model with light-change removal for heavily down-sampled video surveillance signals. ICIP 2006 2006; 1829-1832.
    • (2006) ICIP , pp. 1829-1832
    • Cvetkovic, S.1    Bakker, P.2    Schirris, J.3    de With, P.4
  • 291
    • 77955753212 scopus 로고    scopus 로고
    • A fast approach to novelty detection in video streams using recursive density estimation
    • Ramezani R, Angelov P, Zhou X. A fast approach to novelty detection in video streams using recursive density estimation. IEEE Symposium Intellig Syst 2008; 2: 142-147.
    • (2008) IEEE Symposium Intellig Syst , vol.2 , pp. 142-147
    • Ramezani, R.1    Angelov, P.2    Zhou, X.3
  • 292
    • 13444270492 scopus 로고    scopus 로고
    • Multimodal background model with noise and shadow suppression for moving object detection
    • Mao Y, Shi P. Multimodal background model with noise and shadow suppression for moving object detection. J Southeast Uni 2004; 20(4): 423-426.
    • (2004) J Southeast Uni , vol.20 , Issue.4 , pp. 423-426
    • Mao, Y.1    Shi, P.2
  • 293
    • 84867969200 scopus 로고    scopus 로고
    • Diversity sampling based kernel density estimation for background modelling
    • Mao Y, Shi P. Diversity sampling based kernel density estimation for background modelling. J Shanghai Uni 2005; 9(6): 506-509.
    • (2005) J Shanghai Uni , vol.9 , Issue.6 , pp. 506-509
    • Mao, Y.1    Shi, P.2
  • 294
    • 47349103240 scopus 로고    scopus 로고
    • Salient moving object detection using stochastic approach filtering
    • Tang P, Gao L, Liu Z. Salient moving object detection using stochastic approach filtering. ICIG 2007 2007; 530-535.
    • (2007) ICIG , pp. 530-535
    • Tang, P.1    Gao, L.2    Liu, Z.3
  • 296
    • 84969650784 scopus 로고    scopus 로고
    • An adaptive recursive learning technique for robust foreground object detection
    • Tavakkoli A, Nicolescu M, Bebis G. An adaptive recursive learning technique for robust foreground object detection. ECCV 2006 2006.
    • (2006) ECCV
    • Tavakkoli, A.1    Nicolescu, M.2    Bebis, G.3
  • 297
    • 34047210940 scopus 로고    scopus 로고
    • Robust recursive learning for foreground region detection in videos with quasi-stationary backgrounds
    • Tavakkoli A, Nicolescu M, Bebis G. Robust recursive learning for foreground region detection in videos with quasi-stationary backgrounds. ICPR 2006 2006.
    • (2006) ICPR
    • Tavakkoli, A.1    Nicolescu, M.2    Bebis, G.3
  • 298
    • 35248896245 scopus 로고    scopus 로고
    • Detection, classification, and collaborative tracking of multiple targets using video sensors
    • Pahalawatta P, Depalov D, Pappas T, Katsaggelos A. Detection, classification, and collaborative tracking of multiple targets using video sensors. IPSN 2003 2003; 529-544.
    • (2003) IPSN , pp. 529-544
    • Pahalawatta, P.1    Depalov, D.2    Pappas, T.3    Katsaggelos, A.4
  • 299
    • 28044439637 scopus 로고    scopus 로고
    • Bayesian modeling of dynamic scenes for object detection
    • Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection. IEEE Transact Patt Anal Machine Intellig 2005; 27(11): 1778-1792.
    • (2005) IEEE Transact Patt Anal Machine Intellig , vol.27 , Issue.11 , pp. 1778-1792
    • Sheikh, Y.1    Shah, M.2
  • 300
    • 80053154851 scopus 로고    scopus 로고
    • Joint domain-range modeling of dynamic scenes with adaptive kernel bandwidth
    • Antic B, Crnojevic V. Joint domain-range modeling of dynamic scenes with adaptive kernel bandwidth. ACIVS 2007 2007.
    • (2007) ACIVS
    • Antic, B.1    Crnojevic, V.2
  • 301
    • 5044221727 scopus 로고    scopus 로고
    • Motion-based background subtraction using adaptive kernel density estimation
    • Mittal A. Motion-based background subtraction using adaptive kernel density estimation. CVPR 2004 2004.
    • (2004) CVPR
    • Mittal, A.1
  • 302
    • 33845587420 scopus 로고    scopus 로고
    • A framework for feature selection for background subtraction
    • Parag T, Elgammal A, Mittal A. A framework for feature selection for background subtraction. CVPR 2006 2006.
    • (2006) CVPR
    • Parag, T.1    Elgammal, A.2    Mittal, A.3
  • 303
    • 33846624751 scopus 로고    scopus 로고
    • Person identification in surveillance video by combining mpeg-7 experts
    • Örten B, Soysal M, Alatan A. Person identification in surveillance video by combining mpeg-7 experts. WIAMIS 2005 2005; 352-355.
    • (2005) WIAMIS , pp. 352-355
    • Örten, B.1    Soysal, M.2    Alatan, A.3
  • 305
    • 33845594572 scopus 로고    scopus 로고
    • Comparing belief propagation and graph cuts for novelty detection
    • Mahamud S. Comparing belief propagation and graph cuts for novelty detection. CVPR 2006 2006; 1: 1154-1159.
    • (2006) CVPR , Issue.1 , pp. 1154-1159
    • Mahamud, S.1
  • 306
    • 80053153078 scopus 로고    scopus 로고
    • A motion detection approach based on context modeling
    • Hu J, Jiang J, Qi M. A motion detection approach based on context modeling. CEPS 2006 2006; 78-80.
    • (2006) CEPS , pp. 78-80
    • Hu, J.1    Jiang, J.2    Qi, M.3
  • 309
    • 70349799100 scopus 로고    scopus 로고
    • Robust background maintenance by estimating global intensity level changes for dynamic scenes
    • Hwang Y, Sung K, Chae J, Park Y. Kweon I. Robust background maintenance by estimating global intensity level changes for dynamic scenes. Intellig Service Robot ISR 2009 2009; 2(3): 187-194.
    • (2009) Intellig Service Robot ISR 2009 , vol.2 , Issue.3 , pp. 187-194
    • Hwang, Y.1    Sung, K.2    Chae, J.3    Park, Y.4    Kweon, I.5
  • 311
    • 61649105767 scopus 로고    scopus 로고
    • Novel moving object segmentation algorithm using kernel density estimation and edge information
    • Gu J, Liu Z, Zhang Z. Novel moving object segmentation algorithm using kernel density estimation and edge information. J Comput-Aided Design Comput Graph 2009; 21(2): 223-228.
    • (2009) J Comput-Aided Design Comput Graph , vol.21 , Issue.2 , pp. 223-228
    • Gu, J.1    Liu, Z.2    Zhang, Z.3
  • 313
    • 80053139749 scopus 로고    scopus 로고
    • A fast approach to autonomous real-time novelty detection, multi objects identification and tracking in video stream using recursive density estimation
    • Sadeghi P, Angelov P, Ramezani R. A fast approach to autonomous real-time novelty detection, multi objects identification and tracking in video stream using recursive density estimation. IPMU 2010 2010; 30-43.
    • (2010) IPMU , pp. 30-43
    • Sadeghi, P.1    Angelov, P.2    Ramezani, R.3
  • 314
    • 33845254583 scopus 로고    scopus 로고
    • An eigenbackground subtraction method using recursive error compensation, advances in multimedia information processing
    • Xu Z, Shi P, Gu I. An eigenbackground subtraction method using recursive error compensation, advances in multimedia information processing. PCM 2006 2006; 4261: 779-787.
    • (2006) PCM , Issue.4261 , pp. 779-787
    • Xu, Z.1    Shi, P.2    Gu, I.3
  • 315
    • 78651568454 scopus 로고    scopus 로고
    • Recursive error-compensated dynamic eigenbackground learning and adaptive background subtraction in video
    • Xu Z, Gu I, Shi P. Recursive error-compensated dynamic eigenbackground learning and adaptive background subtraction in video. Optical Engineer 2008; 47(5).
    • (2008) Optical Engineer , vol.47 , Issue.5
    • Xu, Z.1    Gu, I.2    Shi, P.3
  • 316
    • 34147143401 scopus 로고    scopus 로고
    • Real-time detection of anomalous objects in dynamic scene
    • Kawabata S, Hiura S, Sato K. Real-time detection of anomalous objects in dynamic scene. ICPR 2006 2006; 3: 1171-1174.
    • (2006) ICPR , Issue.3 , pp. 1171-1174
    • Kawabata, S.1    Hiura, S.2    Sato, K.3
  • 317
    • 79960299379 scopus 로고    scopus 로고
    • Background images generation based on the nelder-mead simplex algorithm using the eigenbackground model
    • Quivy C, Kumazawa I. Background images generation based on the nelder-mead simplex algorithm using the eigenbackground model. ICIAR 2011 2011; 21-29.
    • (2011) ICIAR , pp. 21-29
    • Quivy, C.1    Kumazawa, I.2
  • 319
    • 0345097532 scopus 로고    scopus 로고
    • An integrated algorithm of incremental and robust PCA
    • Li Y, Xu L, Morphett J, Jacobs R. An integrated algorithm of incremental and robust PCA. ICIP 2003 2003.
    • (2003) ICIP
    • Li, Y.1    Xu, L.2    Morphett, J.3    Jacobs, R.4
  • 320
    • 2442471723 scopus 로고    scopus 로고
    • On incremental and robust subspace learning
    • Li Y. On incremental and robust subspace learning. Patt Recogn PR 2004; 37(7): 1509-1518.
    • (2004) Patt Recogn PR , vol.37 , Issue.7 , pp. 1509-1518
    • Li, Y.1
  • 321
    • 0344982975 scopus 로고    scopus 로고
    • Weighted and robust incremental method for subspace learning
    • Skocaj D, Leonardis A. Weighted and robust incremental method for subspace learning. ICCV 2003 2003 1494-1501.
    • (2003) ICCV , pp. 1494-1501
    • Skocaj, D.1    Leonardis, A.2
  • 322
    • 78651559129 scopus 로고    scopus 로고
    • Incremental and robust learning of subspace representations
    • Skocaj D, Leonardis A. Incremental and robust learning of subspace representations. IVC 2006 2006; 1-12.
    • (2006) IVC , pp. 1-12
    • Skocaj, D.1    Leonardis, A.2
  • 323
    • 46449124041 scopus 로고    scopus 로고
    • Adaptive weight selection for incremental eigen-background modeling
    • Zhang J, Zhuang Y. Adaptive weight selection for incremental eigen-background modeling. ICME 2007 2007.
    • (2007) ICME
    • Zhang, J.1    Zhuang, Y.2
  • 324
    • 33748873916 scopus 로고    scopus 로고
    • Adaptive eigenbackground for dynamic background modeling, intelligent computing in signal processing and pattern recognition
    • Wang L, Wang L, Zhuo Q, Xiao H, Wang W. Adaptive eigenbackground for dynamic background modeling, intelligent computing in signal processing and pattern recognition. Lecture Notes in Control and Information Sciences, Volume 345, pp. 670-675, 2006.
    • (2006) Lecture Notes In Control and Information Sciences , vol.345 , pp. 670-675
    • Wang, L.1    Wang, L.2    Zhuo, Q.3    Xiao, H.4    Wang, W.5
  • 325
    • 48149089653 scopus 로고    scopus 로고
    • Background subtraction using incremental subspace learning
    • Wang L, Wang L, Wen M, Zhuo Q, Wang W. Background subtraction using incremental subspace learning. ICIP 2007 2007; 5: 45-48.
    • (2007) ICIP , Issue.5 , pp. 45-48
    • Wang, L.1    Wang, L.2    Wen, M.3    Zhuo, Q.4    Wang, W.5
  • 326
    • 78649878842 scopus 로고    scopus 로고
    • Fast robust eigen-background updating for foreground detection
    • Li R, Chen Y, Zhang X. Fast robust eigen-background updating for foreground detection. ICIP 2006 2006; 1833-1836.
    • (2006) ICIP , pp. 1833-1836
    • Li, R.1    Chen, Y.2    Zhang, X.3
  • 327
    • 70450186562 scopus 로고    scopus 로고
    • Robust foreground segmentation using subspace based background model
    • Zhang J, Tian Y, Yang Y, Zhu C. Robust foreground segmentation using subspace based background model. APCIP 2009 2009; 2: 214-217.
    • (2009) APCIP , Issue.2 , pp. 214-217
    • Zhang, J.1    Tian, Y.2    Yang, Y.3    Zhu, C.4
  • 328
    • 76249102441 scopus 로고    scopus 로고
    • Video background segmentation using adaptive background models
    • Wu X, Wang Y, Li J. Video background segmentation using adaptive background models. ICIAP 2009 2009; 623-632.
    • (2009) ICIAP , pp. 623-632
    • Wu, X.1    Wang, Y.2    Li, J.3
  • 329
    • 38149110505 scopus 로고    scopus 로고
    • Real-time subspace-based background modeling using multi-channel data
    • Han B. Jain R. Real-time subspace-based background modeling using multi-channel data. ISVC 2007 2007; 162-172.
    • (2007) ISVC , pp. 162-172
    • Han, B.1    Jain, R.2
  • 330
    • 77957959474 scopus 로고    scopus 로고
    • Spatio-temporal patches for night background modeling by subspace learning
    • Zhao Y, Gong H, Lin L. Jia Y. Spatio-temporal patches for night background modeling by subspace learning. ICPR 2008 2008.
    • (2008) ICPR
    • Zhao, Y.1    Gong, H.2    Lin, L.3    Jia, Y.4
  • 331
    • 85013613626 scopus 로고    scopus 로고
    • Illumination invariant foreground detection using multi-subspace learning
    • Dong T, Han T, DeSouza G. Illumination invariant foreground detection using multi-subspace learning. J Int Knowledge-Based Intell Engineer Syst 2010; 14(1): 31-41.
    • (2010) J Int Knowledge-Based Intell Engineer Syst , vol.14 , Issue.1 , pp. 31-41
    • Dong, T.1    Han, T.2    Desouza, G.3
  • 333
    • 77954979119 scopus 로고    scopus 로고
    • Background image generation by preserving lighting condition of outdoor scenes
    • Kawanishi Y, Mitsugami I. Mukunoki M, Minoh M. Background image generation by preserving lighting condition of outdoor scenes. Procedia - Social Behav Sci 2010; 2(1): 129-136.
    • (2010) Procedia - Social Behav Sci , vol.2 , Issue.1 , pp. 129-136
    • Kawanishi, Y.1    Mitsugami, I.2    Mukunoki, M.3    Minoh, M.4
  • 335
    • 77952642187 scopus 로고    scopus 로고
    • Real-time foreground segmentation based on a fused background model
    • Wu X, Yang L, Yang C. Real-time foreground segmentation based on a fused background model. ICCAE 2010 2010; 585-588.
    • (2010) ICCAE , pp. 585-588
    • Wu, X.1    Yang, L.2    Yang, C.3
  • 336
    • 78751569728 scopus 로고    scopus 로고
    • Adaptive learning of multi-subspace for foreground detection under illumination changes
    • Dong Y, DeSouza G. Adaptive learning of multi-subspace for foreground detection under illumination changes Comput Vision Image Understand 2011.
    • (2011) Comput Vision Image Understand
    • Dong, Y.1    Desouza, G.2
  • 339
    • 33845541590 scopus 로고    scopus 로고
    • Robust video-based surveillance by integrating target detection with tracking
    • Wang J, Bebis G., Miller R. Robust video-based surveillance by integrating target detection with tracking. CVPR 2006 2006.
    • (2006) CVPR
    • Wang, J.1    Bebis, G.2    Miller, R.3
  • 340
    • 0141765796 scopus 로고    scopus 로고
    • Accurate on-line support vector regression
    • Ma J, Theiler J. Accurate on-line support vector regression J Neural Computat 2003; 15: 2683-2703.
    • (2003) J Neural Computat , vol.15 , pp. 2683-2703
    • Ma, J.1    Theiler, J.2
  • 341
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax D, Duin R. Support vector data description, Machine Learning. 2004; 54: 45-66.
    • (2004) Machine Learning , vol.54 , pp. 45-66
    • Tax, D.1    Duin, R.2
  • 342
    • 80053156163 scopus 로고    scopus 로고
    • Subspace methods for visual learning and recognition, tutorial session
    • Leonardis A. Subspace methods for visual learning and recognition, tutorial session. ECCV 2002 2002.
    • (2002) ECCV
    • Leonardis, A.1
  • 344
    • 0029411030 scopus 로고
    • An information-maximization approach toblind separation and blind deconvolution
    • Bell A, Sejnowski T. An information-maximization approach toblind separation and blind deconvolution. Neural Computat 1995; 7(11): 1129-1159.
    • (1995) Neural Computat , vol.7 , Issue.11 , pp. 1129-1159
    • Bell, A.1    Sejnowski, T.2
  • 345
    • 18144412736 scopus 로고    scopus 로고
    • A study of global optimization using particle swarms
    • Schutte J, Groenwold A. A study of global optimization using particle swarms. J Global Optimiz 2005; 31(1): 93-108.
    • (2005) J Global Optimiz , vol.31 , Issue.1 , pp. 93-108
    • Schutte, J.1    Groenwold, A.2
  • 346
    • 80053154850 scopus 로고    scopus 로고
    • A Probabilistic Framework Based on KDE-GMM hybrid model for moving object segmentation in dynamic scenes
    • Liu Z, Chen W, Huang K, Tan T. A Probabilistic Framework Based on KDE-GMM hybrid model for moving object segmentation in dynamic scenes. VS 2008 2008.
    • (2008) VS
    • Liu, Z.1    Chen, W.2    Huang, K.3    Tan, T.4
  • 347
    • 79952530187 scopus 로고    scopus 로고
    • Modeling complex scenes for accurate moving objects segmentation
    • Ding J, Li M, Huang K, Tan T. Modeling complex scenes for accurate moving objects segmentation. ACCV 2010 2010; 82-94.
    • (2010) ACCV , pp. 82-94
    • Ding, J.1    Li, M.2    Huang, K.3    Tan, T.4
  • 350
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • Hyvarinen A, Oja E. Independent component analysis: Algorithms and applications. Neural Net 2000; 13: 411-430.
    • (2000) Neural Net , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 351
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non negative matrix factorization
    • Lee D, Seung H. Algorithms for non negative matrix factorization. Neural Infor Sys 2000; 942-948.
    • (2000) Neural Infor Sys , pp. 942-948
    • Lee, D.1    Seung, H.2
  • 353
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • Hardoon D, Szedmak S, Shawe S. Canonical correlation analysis: An overview with application to learning methods. Neural Computat 2004; 16: 2639-2664.
    • (2004) Neural Computat , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe, S.3
  • 354
    • 62549158262 scopus 로고    scopus 로고
    • Using modified mixture of Gaussians for background modeling in video surveillance
    • Shahid H., Khan K., Qazi W. Using modified mixture of Gaussians for background modeling in video surveillance. ICAST 2008 2008.
    • (2008) ICAST
    • Shahid, H.1    Khan, K.2    Qazi, W.3
  • 355
    • 77958127775 scopus 로고    scopus 로고
    • Object kinematic model: A novel approach of adaptive background mixture models for video segmentation
    • Yu J, Zhou X., Qian F. Object kinematic model: a novel approach of adaptive background mixture models for video segmentation. WCICA 2010 2010; 6225-6228.
    • (2010) WCICA , pp. 6225-6228
    • Yu, J.1    Zhou, X.2    Qian, F.3
  • 356
    • 78649988306 scopus 로고    scopus 로고
    • Memory-based gaussian mixture background modeling
    • Qi Y, Wang Y, Li Y. Memory-based gaussian mixture background modeling. Acta Automatica Sinica 2010; 36(11): 1520-1526.
    • (2010) Acta Automatica Sinica , vol.36 , Issue.11 , pp. 1520-1526
    • Qi, Y.1    Wang, Y.2    Li, Y.3
  • 357
    • 80053152515 scopus 로고    scopus 로고
    • Master Thesis, Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India
    • Baloch T. Background subtraction in highly illuminated indoor environment. Master Thesis, Department of Computer Science and Engineering, Indian Institute of Technology, Kanpur, India, 2010.
    • (2010) Background Subtraction In Highly Illuminated Indoor Environment
    • Baloch, T.1
  • 358
    • 85025586397 scopus 로고    scopus 로고
    • Master Thesis, Department of Computer Science, Högskolan Dalarna, November 2008
    • Rahman J. Motion detection for video surveillance. Master Thesis, Department of Computer Science, Högskolan Dalarna, November 2008
    • Motion Detection For Video Surveillance
    • Rahman, J.1
  • 360
    • 77957970694 scopus 로고    scopus 로고
    • Robust region-based background subtraction and shadow removing using colour and gradient information
    • Izadi M, Saeedi P. Robust region-based background subtraction and shadow removing using colour and gradient information ICPR 2008 2008; 1-5.
    • (2008) ICPR , pp. 1-5
    • Izadi, M.1    Saeedi, P.2
  • 361
    • 78249284078 scopus 로고    scopus 로고
    • Improving mixture Gaussian background model by integrating trace information obtained from Kalman filter
    • He S, Guan Q, Xu S, Li Y, Wu Y. Improving mixture Gaussian background model by integrating trace information obtained from Kalman filter. ICCCAS 2010 2010; 378-382.
    • (2010) ICCCAS , pp. 378-382
    • He, S.1    Guan, Q.2    Xu, S.3    Li, Y.4    Wu, Y.5
  • 363
    • 55649116444 scopus 로고    scopus 로고
    • Guide background model update with object tracking
    • Yuan B, Sun Z. Guide background model update with object tracking. J Computat Inform Syst 2008; 4(4): 1635-1642.
    • (2008) J Computat Inform Syst , vol.4 , Issue.4 , pp. 1635-1642
    • Yuan, B.1    Sun, Z.2
  • 368
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization
    • Wright J, Peng Y, Ma Y, Ganesh A, Rao S. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. Neural Inform Process Syst NIPS 2009 2009.
    • (2009) Neural Inform Process Syst NIPS
    • Wright, J.1    Peng, Y.2    Ma, Y.3    Ganesh, A.4    Rao, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.