메뉴 건너뛰기




Volumn 24, Issue 5, 2006, Pages 473-482

Flexible background mixture models for foreground segmentation

Author keywords

Background subtraction; EM algorithm; Foreground segmentation; Maximum a posteriori (MAP); Mixture models

Indexed keywords

APPROXIMATION THEORY; ASYMPTOTIC STABILITY; CAMERAS; COMPUTER APPLICATIONS; COMPUTER VISION; LEARNING ALGORITHMS; MATHEMATICAL MODELS; STOCHASTIC CONTROL SYSTEMS;

EID: 33646855413     PISSN: 02628856     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.imavis.2006.01.018     Document Type: Article
Times cited : (83)

References (23)
  • 1
    • 84905393875 scopus 로고    scopus 로고
    • I. Haritaoglu, D. Harwood, L.S. Davis, W4: Who? When? Where? What? A real-time system for detecting and tracking people, in: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, 1998, pp. 222-227.
  • 2
    • 0032296592 scopus 로고    scopus 로고
    • W.E. Grimson, C. Stauffer, R. Romano, L. Lee, Using adaptive tracking to classify and monitor activities in a site, in: Proceedings of the IEEE Computer Vision and Pattern Recognition, 1998, pp. 22-29.
  • 4
    • 84995345692 scopus 로고    scopus 로고
    • N. Friedman, S. Russell, Image segmentation in video sequences: a probabilistic approach, in: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, 1997, pp. 175-181.
  • 7
    • 84995310847 scopus 로고    scopus 로고
    • C. Ridder, O. Munkelt, H. Kirchner, Adaptive background estimation and foreground detection using kalman-filtering, in: Proceedings of the International Conference on recent Advances in Mechatronics, 1995, pp. 193-199.
  • 8
    • 84944029623 scopus 로고    scopus 로고
    • J. Rittscher, J. Kato, S. Joga, A. Blake, A probabilistic background model for tracking, in: Proceedings of the Sixth European Conference on Computer Vision, 2000, pp. 336-350.
  • 10
    • 84995349267 scopus 로고    scopus 로고
    • P.W. Power, J.A. Schoonees, Understanding background mixture models for foreground segmentation, in: Proceedings of the Image and Vision Computing New Zealand, 2002, pp. 267-271.
  • 17
    • 0000675167 scopus 로고    scopus 로고
    • Structure learning in conditional probability models via an entropic prior and parameter extinction
    • Brand M.E. Structure learning in conditional probability models via an entropic prior and parameter extinction. Neural Computation 11 5 (1999) 1155-1182
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1155-1182
    • Brand, M.E.1
  • 19
    • 18244378520 scopus 로고    scopus 로고
    • On bayesian analysis of mixture models with unknown number of components
    • Richardson S., and Green P. On bayesian analysis of mixture models with unknown number of components. Journal of the Royal Statistical Society, Series B 59 4 (1997) 731-792
    • (1997) Journal of the Royal Statistical Society, Series B , vol.59 , Issue.4 , pp. 731-792
    • Richardson, S.1    Green, P.2
  • 20
    • 0032684826 scopus 로고    scopus 로고
    • Minimum message length and Kolmogorov complexity
    • Wallace C., and Dowe D. Minimum message length and Kolmogorov complexity. Computer Journal 42 4 (1999) 270-283
    • (1999) Computer Journal , vol.42 , Issue.4 , pp. 270-283
    • Wallace, C.1    Dowe, D.2
  • 23
    • 84890520836 scopus 로고    scopus 로고
    • R. Cucchiara, C. Grana, M. Piccardi, A. Prati, Detecting objects, shadows and ghosts in video streams by exploiting color and motion information, in: Proceedings of the IEEE 11th International Conference on Image Analysis and Processing, 2001, pp. 360-365.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.