메뉴 건너뛰기




Volumn , Issue , 2009, Pages 374-381

Nonsmooth bilevel programming for hyperparameter selection

Author keywords

[No Author keywords available]

Indexed keywords

BI-LEVEL PROGRAMMING; BILEVEL; C-V METHOD; CROSS VALIDATION; CURRENT PRACTICES; GRID SEARCH; HYPER-PARAMETER; HYPERPARAMETERS; LEARNING MODELS; LINEAR LEAST SQUARES; LOSS FUNCTIONS; MODELING PERFORMANCE; NEW APPROACHES; NON-SMOOTH; NONCONVEX; NONLINEAR PROGRAMS; OPTIMALITY CONDITIONS; SAMPLE SIZES; SELFTUNING; UNCONSTRAINED OPTIMIZATION PROBLEMS;

EID: 77951231579     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2009.74     Document Type: Conference Paper
Times cited : (14)

References (19)
  • 2
    • 46049118447 scopus 로고    scopus 로고
    • Bilevel optimization and machine learning
    • J. Zurada and et al, editors, Hong Kong, China, June 1-6, 2008 : Plenary/invited Lectures, volume 5050 of Lecture Notes in Computer Science, Springer
    • K. P. Bennett, G. Kunapuli, J. Hu, and J.-S. Pang. Bilevel optimization and machine learning. In J. Zurada and et al, editors, Computational Intelligence: Research Frontiers :IEEE WCCI 2008, Hong Kong, China, June 1-6, 2008 : Plenary/invited Lectures, volume 5050 of Lecture Notes in Computer Science, pages 25-47. Springer, 2008.
    • (2008) Computational Intelligence: Research Frontiers :IEEE WCCI 2008 , pp. 25-47
    • Bennett, K.P.1    Kunapuli, G.2    Hu, J.3    Pang, J.-S.4
  • 4
    • 0009403492 scopus 로고
    • Mathematical programs with optimization problems in the constraints
    • J. Bracken and J. McGill. Mathematical programs with optimization problems in the constraints. In Operations Research, volume 21, pages 37-44, 1973.
    • (1973) Operations Research , vol.21 , pp. 37-44
    • Bracken, J.1    McGill, J.2
  • 5
    • 0000431584 scopus 로고    scopus 로고
    • A QSPR analysis of hplc column capacity factors for a set of high-energy materials using electronic van der waals surface property descriptors computed by the transferable atom equivalent method
    • C. Breneman and M. Rhem. A QSPR analysis of hplc column capacity factors for a set of high-energy materials using electronic van der waals surface property descriptors computed by the transferable atom equivalent method. Journal of Computational Chemistry, 18(2):182-197, 1997.
    • (1997) Journal of Computational Chemistry , vol.18 , Issue.2 , pp. 182-197
    • Breneman, C.1    Rhem, M.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3):131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 8
    • 0042737841 scopus 로고    scopus 로고
    • Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints
    • S. Dempe. Annotated bibliography on bilevel programming and mathematical programs with equilibrium constraints. Optimization, 52:333-359, 2003.
    • (2003) Optimization , vol.52 , pp. 333-359
    • Dempe, S.1
  • 9
    • 85161996864 scopus 로고    scopus 로고
    • Efficient multiple hyperparameter learning for log-linear models
    • C. Do, C.-S., and N. Ng. Efficient multiple hyperparameter learning for log-linear models. In Advances in Neural Information Processing Systems 20, pages 377-384, 2008.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 377-384
    • Do, C.1
  • 10
    • 33746218517 scopus 로고    scopus 로고
    • Efficient optimization of support vector machine learning parameters for unbalanced datasets
    • T. Eitrich and B. Lang. Efficient optimization of support vector machine learning parameters for unbalanced datasets. Journal of Computational and Applied Mathematics, 196(2):425-436, 2006.
    • (2006) Journal of Computational and Applied Mathematics , vol.196 , Issue.2 , pp. 425-436
    • Eitrich, T.1    Lang, B.2
  • 12
    • 84864039082 scopus 로고    scopus 로고
    • An efficient method for gradient-based adaptation of hyperparameters in svm models
    • S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of hyperparameters in svm models. In Neural Information Processing Systems 18, pages 673-680, 2006.
    • (2006) Neural Information Processing Systems , vol.18 , pp. 673-680
    • Keerthi, S.1    Sindhwani, V.2    Chapelle, O.3
  • 13
    • 73549124275 scopus 로고    scopus 로고
    • Bilevel model selection for support vector machines
    • P. Pardalos and P. Hansen, editors, AMS
    • G. Kunapuli, K. P. Bennett, and J.-S. Pang. Bilevel model selection for support vector machines. In P. Pardalos and P. Hansen, editors, Data Mining and Mathematical Programming, volume 45, pages 129-158. AMS, 2008.
    • (2008) Data Mining and Mathematical Programming , vol.45 , pp. 129-158
    • Kunapuli, G.1    Bennett, K.P.2    Pang, J.-S.3
  • 14
    • 33746789921 scopus 로고    scopus 로고
    • Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries
    • J. Inglese, et al. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proceedings of the National Academy of Sciences, 103(31):11473-11478, 2006.
    • (2006) Proceedings of the National Academy of Sciences , vol.103 , Issue.31 , pp. 11473-11478
    • Inglese, J.1
  • 16
    • 80054936825 scopus 로고    scopus 로고
    • A proximity control algorithm to minimize nonsmooth and nonconvex functions
    • D. Noll, O. Prot, and A. Rondepierre. A proximity control algorithm to minimize nonsmooth and nonconvex functions. Pacific Journal on Optimization, pages 571-604, 2008.
    • (2008) Pacific Journal on Optimization , pp. 571-604
    • Noll, D.1    Prot, O.2    Rondepierre, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.