메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Learning the compositional nature of visual objects

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; LEARNING SYSTEMS; MATHEMATICAL MODELS; PROBABILITY DISTRIBUTIONS; STATISTICAL METHODS;

EID: 34948879650     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383154     Document Type: Conference Paper
Times cited : (41)

References (26)
  • 1
    • 12844249589 scopus 로고    scopus 로고
    • Learning to detect objects in images via a sparse, part-based representation
    • S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Machine Intell., 26(11), 2004.
    • (2004) IEEE Trans. Pattern Anal. Machine Intell , vol.26 , Issue.11
    • Agarwal, S.1    Awan, A.2    Roth, D.3
  • 2
    • 24644502276 scopus 로고    scopus 로고
    • Shape matching and object recognition using low distortion correspondence
    • A. C. Berg, T. L. Berg, and J. Malik. Shape matching and object recognition using low distortion correspondence. In CVPR, 2005.
    • (2005) CVPR
    • Berg, A.C.1    Berg, T.L.2    Malik, J.3
  • 3
    • 0023322501 scopus 로고
    • Recognition-by-components: A theory of human image understanding
    • I. Biederman. Recognition-by-components: A theory of human image understanding. Psychological Rev., 94(2), 1987.
    • (1987) Psychological Rev , vol.94 , Issue.2
    • Biederman, I.1
  • 5
    • 33745963422 scopus 로고    scopus 로고
    • Feature hierarchies for object classification
    • B. Epshtein and S. Ullman. Feature hierarchies for object classification. In ICCV, 2005.
    • (2005) ICCV
    • Epshtein, B.1    Ullman, S.2
  • 6
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR Workshop on GMBV, 2004.
    • (2004) CVPR Workshop on GMBV
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-invariant learning. In CVPR, 2003.
    • (2003) CVPR
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 9
    • 0015567825 scopus 로고
    • The representation and matching of pictorial structures
    • M. A. Fischler and R. A. Elschlager. The representation and matching of pictorial structures. IEEE Trans. Comput., 22(1), 1973.
    • (1973) IEEE Trans. Comput , vol.22 , Issue.1
    • Fischler, M.A.1    Elschlager, R.A.2
  • 11
    • 24644499267 scopus 로고    scopus 로고
    • Pyramid match kernels: Discriminative classification with sets of image features
    • Technical Report MIT-CSAIL-TR-2006-020
    • K. Grauman and T. Darrell. Pyramid match kernels: Discriminative classification with sets of image features. Technical Report MIT-CSAIL-TR-2006-020, 2006.
    • (2006)
    • Grauman, K.1    Darrell, T.2
  • 12
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • Technical Report 7694, Caltech, 2007
    • G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Technical Report 7694, Caltech, 2007.
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 13
    • 33745933878 scopus 로고    scopus 로고
    • Combining generative models and fisher kernels for object class recognition
    • A. D. Holub, M. Welling, and P. Perona. Combining generative models and fisher kernels for object class recognition. In ICCV, 2005.
    • (2005) ICCV
    • Holub, A.D.1    Welling, M.2    Perona, P.3
  • 14
    • 33845568397 scopus 로고    scopus 로고
    • Context and hierarchy in a probabilistic image model
    • Y. Jin and S. Geman. Context and hierarchy in a probabilistic image model. In CVPR, 2006.
    • (2006) CVPR
    • Jin, Y.1    Geman, S.2
  • 15
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 16
    • 27244448694 scopus 로고    scopus 로고
    • Scale-invariant object categorization using a scale-adaptive mean-shift search
    • B. Leibe and B. Schiele. Scale-invariant object categorization using a scale-adaptive mean-shift search. In Pattern Recognition, DAGM, 2004.
    • (2004) Pattern Recognition, DAGM
    • Leibe, B.1    Schiele, B.2
  • 17
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision, 60(2), 2004.
    • (2004) Int. J. Computer Vision , vol.60 , Issue.2
    • Lowe, D.G.1
  • 18
    • 9644260534 scopus 로고    scopus 로고
    • Scale & affine invariant interest point detectors
    • K. Mikolajczyk and C. Schmid. Scale & affine invariant interest point detectors. Int. J. Computer Vision, 60(1), 2004.
    • (2004) Int. J. Computer Vision , vol.60 , Issue.1
    • Mikolajczyk, K.1    Schmid, C.2
  • 19
    • 33845569574 scopus 로고    scopus 로고
    • Multiclass object recognition with sparse, localized features
    • J. Mutch and D. G. Lowe. Multiclass object recognition with sparse, localized features. In CVPR, 2006.
    • (2006) CVPR
    • Mutch, J.1    Lowe, D.G.2
  • 20
    • 33745861966 scopus 로고    scopus 로고
    • Object categorization by compositional graphical models
    • B. Ommer and J. M. Buhmann. Object categorization by compositional graphical models. In EMMCVPR, 2005.
    • (2005) EMMCVPR
    • Ommer, B.1    Buhmann, J.M.2
  • 21
    • 33750257702 scopus 로고    scopus 로고
    • Learning compositional categorization models
    • B. Ommer and J. M. Buhmann. Learning compositional categorization models. In ECCV, 2006.
    • (2006) ECCV
    • Ommer, B.1    Buhmann, J.M.2
  • 23
    • 33845573438 scopus 로고    scopus 로고
    • Incremental learning of object detectors using a visual shape alphabet
    • A. Opelt, A. Pinz, and A. Zisserman. Incremental learning of object detectors using a visual shape alphabet. In CVPR, 2006.
    • (2006) CVPR
    • Opelt, A.1    Pinz, A.2    Zisserman, A.3
  • 24
    • 0035680368 scopus 로고    scopus 로고
    • Pairwise coupling for machine recognition of hand-printed Japanese characters
    • V. Roth and K. Tsuda. Pairwise coupling for machine recognition of hand-printed Japanese characters. In CVPR, 2001.
    • (2001) CVPR
    • Roth, V.1    Tsuda, K.2
  • 25
    • 24644511277 scopus 로고    scopus 로고
    • Object recognition with features inspired by visual cortex
    • T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. In CVPR, 2005.
    • (2005) CVPR
    • Serre, T.1    Wolf, L.2    Poggio, T.3
  • 26
    • 33845566162 scopus 로고    scopus 로고
    • SVM-KNN: Discriminative nearest neighbor classification for visual category recognition
    • H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Discriminative nearest neighbor classification for visual category recognition. In CVPR, 2006.
    • (2006) CVPR
    • Zhang, H.1    Berg, A.2    Maire, M.3    Malik, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.