메뉴 건너뛰기




Volumn , Issue , 2011, Pages 897-904

Towards cross-category knowledge propagation for learning visual concepts

Author keywords

[No Author keywords available]

Indexed keywords

KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; PATTERN RECOGNITION; SEMANTICS;

EID: 80052901068     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2011.5995312     Document Type: Conference Paper
Times cited : (59)

References (37)
  • 1
    • 0002021231 scopus 로고
    • Matching pursuit of images
    • F. Bergeaud and S. Mallat. Matching Pursuit of Images. In ICIP, 1995.
    • (1995) ICIP
    • Bergeaud, F.1    Mallat, S.2
  • 3
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in visual recognition
    • Y.-L. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis of Feature Pooling in Visual Recognition. In ICML, 2010.
    • (2010) ICML
    • Boureau, Y.-L.1    Ponce, J.2    LeCun, Y.3
  • 4
    • 80052870578 scopus 로고    scopus 로고
    • Discriminative learning of local image descriptors
    • M. Brown, G. Hua, and S. Winder. Discriminative Learning of Local Image Descriptors. PAMI, 2010.
    • (2010) PAMI
    • Brown, M.1    Hua, G.2    Winder, S.3
  • 5
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. D. Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. CPAM, 2004.
    • (2004) CPAM
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 6
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • D. L. Donoho. Compressed Sensing. TIT, 2006.
    • (2006) TIT
    • Donoho, D.L.1
  • 7
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories. In CVPR, 2004.
    • (2004) CVPR
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 8
    • 75449104637 scopus 로고    scopus 로고
    • Learning to represent visual input
    • G. E. Hinton. Learning to Represent Visual Input. RSTB, 2010.
    • (2010) RSTB
    • Hinton, G.E.1
  • 9
    • 50649113227 scopus 로고    scopus 로고
    • Discriminant embedding for local image descriptors
    • G. Hua, M. Brown, and S. Winder. Discriminant Embedding for Local Image Descriptors. In ICCV, 2007.
    • (2007) ICCV
    • Hua, G.1    Brown, M.2    Winder, S.3
  • 10
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • D. H. Hubel and T. N. Wiesel. Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex. JPHYSIO, 1962.
    • (1962) JPHYSIO
    • Hubel, D.H.1    Wiesel, T.N.2
  • 12
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. What Is the Best Multi-Stage Architecture for Object Recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    LeCun, Y.4
  • 13
    • 70049083257 scopus 로고    scopus 로고
    • Fast inference in sparse coding algorithms with applications to object recognition
    • K. Kavukcuoglu, M. A. Ranzato, and Y. LeCun. Fast Inference in Sparse Coding Algorithms With Applications to Object Recognition. Technical report, NYU, 2008.
    • (2008) Technical Report, NYU
    • Kavukcuoglu, K.1    Ranzato, M.A.2    LeCun, Y.3
  • 15
    • 79959327338 scopus 로고    scopus 로고
    • Convolutional deep belief networks on CIFAR-10
    • A. Krizhevsky. Convolutional Deep Belief Networks on CIFAR-10. Technical report, UOFT, 2010.
    • (2010) Technical Report, UOFT
    • Krizhevsky, A.1
  • 16
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. PIEEE, 1998.
    • (1998) PIEEE
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 56449086627 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • H. Lee, C. Ekanadham, and A. Y. Ng. Sparse Deep Belief Net Model for Visual Area V2. In NIPS, 2007.
    • (2007) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 19
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 20
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung and J. Malik. Representing and Recognizing the Visual Appearance of Materials Using Three-Dimensional Textons. IJCV, 2001.
    • (2001) IJCV
    • Leung, T.1    Malik, J.2
  • 21
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariants keypoints
    • D. G. Lowe. Distinctive Image Features from Scale-Invariants Keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 22
    • 51949103923 scopus 로고    scopus 로고
    • Discriminative learned dictionaries for local image analysis
    • J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Discriminative Learned Dictionaries for Local Image Analysis. In CVPR, 2008.
    • (2008) CVPR
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4    Zisserman, A.5
  • 24
    • 80052890481 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B. A. Olshausen and D. J. Field. Sparse Coding With an Overcomplete Basis Set: A Strategy Employed by V1? VISR, 1997.
    • (1997) VISR
    • Olshausen, B.A.1    Field, D.J.2
  • 25
    • 38949193299 scopus 로고    scopus 로고
    • Why is real-world visual object recognition hard?
    • N. Pinto, D. D. Cox, and J. J. DiCarlo. Why Is Real-World Visual Object Recognition Hard? PLoS, 2008.
    • (2008) PLoS
    • Pinto, N.1    Cox, D.D.2    DiCarlo, J.J.3
  • 26
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. A. Ranzato, Y.-L. Boureau, and Y. LeCun. Sparse Feature Learning for Deep Belief Networks. In NIPS, 2007.
    • (2007) NIPS
    • Ranzato, M.A.1    Boureau, Y.-L.2    LeCun, Y.3
  • 27
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and covariances using factorized third-order Boltzmann machines
    • M. A. Ranzato and G. E. Hinton. Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In CVPR, 2010.
    • (2010) CVPR
    • Ranzato, M.A.1    Hinton, G.E.2
  • 28
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • M. A. Ranzato, F.-J. Huang, Y. Boureau, and Y. LeCun. Unsupervised Learning of Invariant Feature Hierarchies With Applications to Object Recognition. In CVPR, 2007.
    • (2007) CVPR
    • Ranzato, M.A.1    Huang, F.-J.2    Boureau, Y.3    LeCun, Y.4
  • 29
    • 85112276587 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • M. A. Ranzato, C. Poultney, S. Chopra, and Y. LeCun. Efficient Learning of Sparse Representations With an Energy-Based Model. In NIPS, 2006.
    • (2006) NIPS
    • Ranzato, M.A.1    Poultney, C.2    Chopra, S.3    LeCun, Y.4
  • 31
    • 77949875753 scopus 로고    scopus 로고
    • DAISY: An efficient dense descriptor applied to wide-baseline stereo
    • E. Tola, V. Lepetit, and P. Fua. DAISY: An Efficient Dense Descriptor Applied to Wide-Baseline Stereo. PAMI, 2010.
    • (2010) PAMI
    • Tola, E.1    Lepetit, V.2    Fua, P.3
  • 32
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large dataset for non-parametric object and scene recognition
    • A. Torralba, R. Fergus, and W. T. Freeman. 80 Million Tiny Images: A Large Dataset for Non-Parametric Object and Scene Recognition. PAMI, 2008.
    • (2008) PAMI
    • Torralba, A.1    Fergus, R.2    Freeman, W.T.3
  • 33
    • 0034681515 scopus 로고    scopus 로고
    • Sparse coding and decorrelation in primary visual cortex during natural vision
    • W. E. Vinje and J. L. Gallant. Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision. SCIENCE, 2000.
    • (2000) Science
    • Vinje, W.E.1    Gallant, J.L.2
  • 34
  • 35
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear Spatial Pyramid Matching Using Sparse Coding for Image Classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 36
    • 77956510751 scopus 로고    scopus 로고
    • Improved local coordinate coding using local tangents
    • K. Yu and T. Zhang. Improved Local Coordinate Coding Using Local Tangents. In ICML, 2010.
    • (2010) ICML
    • Yu, K.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.