메뉴 건너뛰기




Volumn 287, Issue 5456, 2000, Pages 1273-1276

Sparse coding and decorrelation in primary visual cortex during natural vision

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL EXPERIMENT; ARTICLE; MACACA; NONHUMAN; PRIMATE; PRIORITY JOURNAL; VISION; VISUAL CORTEX; VISUAL NERVOUS SYSTEM; VISUAL STIMULATION;

EID: 0034681515     PISSN: 00368075     EISSN: None     Source Type: Journal    
DOI: 10.1126/science.287.5456.1273     Document Type: Article
Times cited : (1037)

References (37)
  • 1
    • 0002014402 scopus 로고
    • W. A. Rosenblith, Ed. MIT Press, Cambridge, MA
    • H. B. Barlow, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217-234; Neural Comput. 1, 295 (1989); J. G. Daugman, IEEE Trans. Biomed Eng. 36, 107 (1989); D. J. Field, J. Opt. Soc. Am. A 4, 2379 (1987); Neural Comput. 6, 559 (1994).
    • (1961) Sensory Communication , pp. 217-234
    • Barlow, H.B.1
  • 2
    • 0001471775 scopus 로고
    • H. B. Barlow, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217- 234; Neural Comput. 1, 295 (1989); J. G. Daugman, IEEE Trans. Biomed Eng. 36, 107 (1989); D. J. Field, J. Opt. Soc. Am. A 4, 2379 (1987); Neural Comput. 6, 559 (1994).
    • (1989) Neural Comput. , vol.1 , pp. 295
  • 3
    • 0024550990 scopus 로고
    • H. B. Barlow, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217- 234; Neural Comput. 1, 295 (1989); J. G. Daugman, IEEE Trans. Biomed Eng. 36, 107 (1989); D. J. Field, J. Opt. Soc. Am. A 4, 2379 (1987); Neural Comput. 6, 559 (1994).
    • (1989) IEEE Trans. Biomed Eng. , vol.36 , pp. 107
    • Daugman, J.G.1
  • 4
    • 0023492118 scopus 로고
    • H. B. Barlow, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217- 234; Neural Comput. 1, 295 (1989); J. G. Daugman, IEEE Trans. Biomed Eng. 36, 107 (1989); D. J. Field, J. Opt. Soc. Am. A 4, 2379 (1987); Neural Comput. 6, 559 (1994).
    • (1987) J. Opt. Soc. Am. A , vol.4 , pp. 2379
    • Field, D.J.1
  • 5
    • 0000929221 scopus 로고
    • H. B. Barlow, in Sensory Communication, W. A. Rosenblith, Ed. (MIT Press, Cambridge, MA, 1961), pp. 217- 234; Neural Comput. 1, 295 (1989); J. G. Daugman, IEEE Trans. Biomed Eng. 36, 107 (1989); D. J. Field, J. Opt. Soc. Am. A 4, 2379 (1987); Neural Comput. 6, 559 (1994).
    • (1994) Neural Comput. , vol.6 , pp. 559
  • 7
    • 0029938380 scopus 로고    scopus 로고
    • B. A. Olshausen and D. J. Field, Nature 381, 607 (1996); Vision Res. 23, 3311 (1997).
    • (1997) Vision Res. , vol.23 , pp. 3311
  • 9
    • 0030115492 scopus 로고    scopus 로고
    • W. Levy and R. A. Baxter, Neural Comput. 8, 531 (1996); S. B. Laughlin, R. R. de Ruyter van Steveninck, J. C. Anderson, Nat. Neurosci. 1, 36 (1998).
    • (1996) Neural Comput. , vol.8 , pp. 531
    • Levy, W.1    Baxter, R.A.2
  • 17
    • 0343666868 scopus 로고    scopus 로고
    • note
    • We generated saccadic eye scan paths by using a model of natural macaque eye movements. We acquired eye movement data from a scleral search coil during free-viewing experiments (8, 17). The model chose random saccade directions from a uniform distribution of angles. We chose saccade lengths randomly from a distribution based on a b-spline fit to the measured distribution of free-viewing saccade lengths. The eye velocity versus time profile for each saccade was obtained from a lookup table of b-spline fits to actual velocity/time profiles (as a function of saccade length). We chose fixation durations from a gaussian distribution (mean, 350 ms; standard deviation, 50 ms).
  • 18
    • 0343666867 scopus 로고    scopus 로고
    • We extracted image patches from 1280 × 1024 pixel images obtained from a high-resolution, commercial photo-CD library (Corel Inc.). Images included nature scenes as well as man-made objects and animals as well as humans. To avoid aliasing artifacts that might result from displaying movies on a monitor with 72-Hz refresh we used an antialiasing algorithm in which each 13.8-ms frame of a movie was constructed by averaging 14 images representing the position of the CRF at about 1-ms resolution.
    • We extracted image patches from 1280 × 1024 pixel images obtained from a high-resolution, commercial photo-CD library (Corel Inc.). Images included nature scenes as well as man-made objects and animals as well as humans. To avoid aliasing artifacts that might result from displaying movies on a monitor with 72-Hz refresh we used an antialiasing algorithm in which each 13.8-ms frame of a movie was constructed by averaging 14 images representing the position of the CRF at about 1-ms resolution.
  • 19
    • 0030987206 scopus 로고    scopus 로고
    • All animal procedures were approved by the University of California, Berkeley, Animal Care and Use Committee and conformed to or exceeded all relevant National Institutes of Health and U.S. Department of Agriculture standards. Single neuron recordings were made from two awake, behaving macaque monkeys (Macaca mulatta) with extracellular electrodes. Additional details about recording and surgicat procedures are given in [C. E. Connor et al., J. Neurosci. 17, 3201 (1997)]. All data reported here were taken under conditions of excellent single-unit isolation. Eye position was monitored with a scleral search coil and trials were aborted if the eye deviated from fixation by more than 0.35°. Movie duration varied from 5 to 10 s. During recording sessions each movie was divided into 5-s segments; segments were then shown in and around the CRF on successive trials while the animal performed a fixation task for a juice reward. Each trial consisted of a stimulus of a single size with differently sized stimulus conditions randomly interleaved across trials.
    • (1997) J. Neurosci. , vol.17 , pp. 3201
    • Connor, C.E.1
  • 21
    • 0003843310 scopus 로고
    • Chapman & Hall, New York
    • Throughout this report we measured significance with randomization tests using 1000 random permutations of the relevant data. For further discussion see [B. F. J. Manly, Randomization and Monte-Carlo Methods in Biology, (Chapman & Hall, New York, 1991)].
    • (1991) Randomization and Monte-Carlo Methods in Biology
    • Manly, B.F.J.1
  • 22
    • 0342361696 scopus 로고    scopus 로고
    • note
    • If responses are averaged within a fixation, sparseness declines from 41 to 23%, 52 to 34%, 61 to 42%, and 62 to 45% for stimuli one, two, three, and four times the size of the CRF, respectively. made all comparisons on a movie-by-movie basis. Note that sparseness values based on single-spike trains are biased upward because of the discrete nature of spike generation.
  • 23
    • 0030904203 scopus 로고    scopus 로고
    • The random sinusoidal grating sequence was similar to that used by D. L. Ringach, M. J. Hawken, R. Shapley [Nature 387, 281 (1997)]. The orientation, spatial frequency, and phase of the grating were chosen randomly on each video frame (at 72 Hz). Gratings were shown at a Michelson contrast of 0.5. Before analysis, stimuli were binned into 10° orientation steps and 6 to 12 spatial frequency steps. Responses were analyzed by parametric reverse correlation on orientation and spatial frequency, averaging over phase. The mean responses across stimulus bins (at the peak response latency) were used to estimate the sparseness statistic.
    • (1997) Nature , vol.387 , pp. 281
    • Ringach, D.L.1    Hawken, M.J.2    Shapley, R.3
  • 25
    • 0343231201 scopus 로고    scopus 로고
    • note
    • Several theoretical studies of sparse population coding have reported the kurtosis of the distribution of responses observed across a set of linear filters, with respect to a particular stimulus ensemble (2, 20). This measure is not directly applicable to our data because the responses of area V1 neurons are asymmetric: cells typically exhibit low spontaneous rates and appropriate stimuli elevate these rates. To estimate kurtosis we converted each response distribution to a symmetric distribution by reflecting the data about the origin. The resulting symmetric distributions are unimodal with zero mean and decrease smoothly to zero. Our kurtosis statistic is well behaved and directly comparable to the results of theoretical studies.
  • 26
    • 0342796584 scopus 로고    scopus 로고
    • note
    • n∥ is the norm of the appropriate vector. This measure is sensitive to changes across the basis dimensions of the movie time stream and is insensitive to differences in absolute rate.
  • 27
    • 0024466409 scopus 로고
    • It is difficult to choose a scalar measure of response similarity appropriate for all situations; see [P. Di Lorenzo, J. Neurophysiol. 62, 823 (1989)]. To validate our results we performed two alternative versions of the population decorrelation analysis. For each neuron pair we also computed both the linear correlation coefficient and the neural discrimination index of Di Lorenzo. In both cases, nCRF stimulation leads to significant decorrelation (P ≤ 0.001). To ensure that the slightly different stimulus sizes do not influence our results, we also performed all similarity analyses on a data set restricted to neuron pairs with identical CRF sizes (and thus identical stimulation). Under these conditions the decorrelating effect of the nCRF remains significant (P ≤ 0.001).
    • (1989) J. Neurophysiol. , vol.62 , pp. 823
    • Di Lorenzo, P.1
  • 28
    • 0343231200 scopus 로고    scopus 로고
    • note
    • The compound grating stimulus consisted of a CRF conditioning grating and a probe grating. We set the conditioning grating's orientation and spatial frequency to the neuron's preferred values [as determined by reverse correlation on responses to a dynamic grating sequence (19) presented in the CRF]. The phase of the conditioning grating varied randomly with each video frame. Both gratings were presented at a Michelson contrast of 0.5 and their edges were blended into one another and into the background. We performed reverse correlation on the position of the probe grating within the nCRF annulus (collapsing over all other parameters). To measure baseline responses we presented interleaved trials containing only the conditioning grating.
  • 32
    • 0026904517 scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1992) Visual Neurosci. , vol.9 , pp. 181
    • Heeger, D.J.1
  • 33
    • 0026735783 scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1992) Neuron , vol.9 , pp. 1
    • Gilbert, C.D.1
  • 34
    • 0028849465 scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1995) Nature , vol.378 , pp. 492
    • Sillito, A.M.1
  • 35
    • 0030046041 scopus 로고    scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 615
    • Gilbert, C.D.1
  • 36
    • 0030780094 scopus 로고    scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1997) J. Neurosci. , vol.17 , pp. 8621
    • Carandini, M.1
  • 37
    • 0026766342 scopus 로고
    • D. J. Heeger, Visual Neurosci. 9, 181 (1992); C. D. Gilbert, Neuron 9, 1 (1992); A. M. Sillito et al., Nature 378, 492 (1995); C. D. Gilbert et al., Proc. Natl. Acad. Sci. U.S.A. 93, 615 (1996); M. Carandini et al., J. Neurosci. 17, 8621 (1997); J. J. Knierim and D. C. Van Essen, J. Neurophysiol. 67, 961 (1992).
    • (1992) J. Neurophysiol. , vol.67 , pp. 961
    • Knierim, J.J.1    Van Essen, D.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.