메뉴 건너뛰기




Volumn , Issue , 2011, Pages 654-662

Dual active feature and sample selection for graph classification

Author keywords

Algorithm; Experimentation; Performance

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; FEATURE SELECTION;

EID: 80052686799     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2020408.2020511     Document Type: Conference Paper
Times cited : (41)

References (30)
  • 1
    • 38049078541 scopus 로고    scopus 로고
    • Margin based active learning
    • M. F. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning. In COLT, pages 35-50, 2007.
    • (2007) COLT , pp. 35-50
    • Balcan, M.F.1    Broder, A.Z.2    Zhang, T.3
  • 2
    • 4544291404 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, pages 211-218, 2002.
    • (2002) ICDM , pp. 211-218
    • Borgelt, C.1    Berthold, M.2
  • 3
    • 80052687671 scopus 로고    scopus 로고
    • PhD thesis, Ludwig-Maximilians-University Munich
    • K. M. Borgwardt. Graph Kernels. PhD thesis, Ludwig-Maximilians-University Munich, 2007.
    • (2007)
    • Kernels, K.M.1    Borgwardt, G.2
  • 5
    • 85008256270 scopus 로고    scopus 로고
    • Identifying bug signatures using discrimative graph mining
    • H. Cheng, D. Lo, Y. Zhou, X. Wang, and X. Yan. Identifying bug signatures using discrimative graph mining. In ISSTA, pages 141-152, 2009.
    • (2009) ISSTA , pp. 141-152
    • Cheng, H.1    Lo, D.2    Zhou, Y.3    Wang, X.4    Yan, X.5
  • 6
    • 85152628923 scopus 로고
    • Committee-based sampling for training probabilistic classifiers
    • I. Dagan and S. P. Engenlson. Committee-based sampling for training probabilistic classifiers. In ICML, pages 150-157, 1995.
    • (1995) ICML , pp. 150-157
    • Dagan, I.1    Engenlson, S.P.2
  • 7
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML, pages 208-215, 2008.
    • (2008) ICML , pp. 208-215
    • Dasgupta, S.1    Hsu, D.2
  • 8
    • 38049181434 scopus 로고    scopus 로고
    • Dual strategy active learning
    • P. Donmez, J. G. Carbonell, and P. N. Bennett. Dual strategy active learning. In ECML, pages 116-127, 2007.
    • (2007) ECML , pp. 116-127
    • Donmez, P.1    Carbonell, J.G.2    Bennett, P.N.3
  • 9
    • 65449172082 scopus 로고    scopus 로고
    • Direct mining of discriminative and essential frequent patterns via model-based search tree
    • W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S. Yu, and O. Verscheure. Direct mining of discriminative and essential frequent patterns via model-based search tree. In KDD, pages 230-238, 2008.
    • (2008) KDD , pp. 230-238
    • Fan, W.1    Zhang, K.2    Cheng, H.3    Gao, J.4    Yan, X.5    Han, J.6    Yu, P.S.7    Verscheure, O.8
  • 10
    • 0031209604 scopus 로고    scopus 로고
    • Selective Sampling Using the Query by Committee Algorithm
    • Y. Freund, E. S. H. S. Seung, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28(2-3):133-168, 1997. (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 11
    • 23844510632 scopus 로고    scopus 로고
    • On graph kernels: Hardness results and efficient alternatives
    • T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In COLT/Kernel, 2003.
    • (2003) COLT/Kernel
    • Gärtner, T.1    Flach, P.A.2    Wrobel, S.3
  • 12
    • 33646528415 scopus 로고    scopus 로고
    • Measuring statistical dependence with Hilbert-Schmidt norms
    • Singapore
    • A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In ALT, pages 63-77, Singapore, 2005.
    • (2005) ALT , pp. 63-77
    • Gretton, A.1    Bousquet, O.2    Smola, A.3    Schölkopf, B.4
  • 13
    • 12244278576 scopus 로고    scopus 로고
    • Cyclic pattern kernels for predictive graph mining
    • T. Horvath, T. Gärtner, and S. Wrobel. Cyclic pattern kernels for predictive graph mining. In KDD, 2004.
    • (2004) KDD
    • Horvath, T.1    Gärtner, T.2    Wrobel, S.3
  • 14
    • 78149328300 scopus 로고    scopus 로고
    • Efficient mining of frequent subgraph in the presence of isomorphism
    • J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism. In ICDM, pages 549-552, 2003.
    • (2003) ICDM , pp. 549-552
    • Huan, J.1    Wang, W.2    Prins, J.3
  • 15
    • 84860693595 scopus 로고    scopus 로고
    • Active learning by querying informative and representative examples
    • S.-J. Huang, R. Jin, and Z.-H. Zhou. Active learning by querying informative and representative examples. In NIPS. 2011.
    • (2011) NIPS
    • Huang, S.-J.1    Jin, R.2    Zhou, Z.-H.3
  • 16
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD, pages 13-23, 2000.
    • (2000) PKDD , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 17
    • 77954691039 scopus 로고    scopus 로고
    • GAIA: Graph classification using evolutionary computation
    • N. Jin, C. Young, and W. Wang. GAIA: graph classification using evolutionary computation. In SIGMOD, pages 879-890, 2010.
    • (2010) SIGMOD , pp. 879-890
    • Jin, N.1    Young, C.2    Wang, W.3
  • 18
    • 77956201235 scopus 로고    scopus 로고
    • Semi-supervised feature selection for graph classification
    • X. Kong and P. S. Yu. Semi-supervised feature selection for graph classification. In KDD, pages 793-802, 2010.
    • (2010) KDD , pp. 793-802
    • Kong, X.1    Yu, P.S.2
  • 19
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 20
    • 14344265134 scopus 로고    scopus 로고
    • Active learning using pre-cluster
    • H. T. Nguyen and A. W. M. Smeulders. Active learning using pre-cluster. In ICML, pages 623-630, 2004.
    • (2004) ICML , pp. 623-630
    • Nguyen, H.T.1    Smeulders, A.W.M.2
  • 25
    • 0003007938 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In ICML, pages 999-1006, 2000.
    • (2000) ICML , pp. 999-1006
    • Tong, S.1    Koller, D.2
  • 26
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.4
  • 27
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2
  • 28
    • 33745185086 scopus 로고    scopus 로고
    • Graph indexing based on discriminative frequent struture analysis
    • X. Yan, P. S. Yu, and J. Han. Graph indexing based on discriminative frequent struture analysis. ACM Transactions on Database Systems, 30(4):960-993, 2005.
    • (2005) ACM Transactions on Database Systems , vol.30 , Issue.4 , pp. 960-993
    • Yan, X.1    Yu, P.S.2    Han, J.3
  • 29
    • 70350639690 scopus 로고    scopus 로고
    • Effective multi-label active learning for text classification
    • B. Yang, J. Sun, T. Wang, and Z. Chen. Effective multi-label active learning for text classification. In KDD, pages 917-926, 2009.
    • (2009) KDD , pp. 917-926
    • Yang, B.1    Sun, J.2    Wang, T.3    Chen, Z.4
  • 30
    • 33749265864 scopus 로고    scopus 로고
    • Active learning via transductive experimental design
    • K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental design. In ICML, pages 1081-1088, 2006.
    • (2006) ICML , pp. 1081-1088
    • Yu, K.1    Bi, J.2    Tresp, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.