-
1
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9(4), 309-347 (1992)
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
4
-
-
21844452434
-
Learning hidden variable networks: The information bottleneck approach
-
Elidan, G., Friedman, N.: Learning hidden variable networks: The information bottleneck approach. Journal of Machine Learning Research 6, 81-127 (2005)
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 81-127
-
-
Elidan, G.1
Friedman, N.2
-
5
-
-
1842641459
-
Discovering hidden variables: A structure-based approach
-
Elidan, G., Lotner, N., Friedman, N., Koller, D.: Discovering hidden variables: A structure-based approach. In: Advances in Neural Information Processing Systems (NIPS 2000), vol. 13 (2000)
-
(2000)
Advances in Neural Information Processing Systems (NIPS 2000)
, vol.13
-
-
Elidan, G.1
Lotner, N.2
Friedman, N.3
Koller, D.4
-
9
-
-
0037262841
-
Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
-
Friedman, N., Koller, D.: Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning 50(1-2), 95-125 (2003)
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
, pp. 95-125
-
-
Friedman, N.1
Koller, D.2
-
10
-
-
43049097125
-
Improving the structure MCMC sampler for Bayesian networks by int roducing a new edge reversal move
-
Grzegorczyk, M., Husmeier, D.: Improving the structure MCMC sampler for Bayesian networks by int roducing a new edge reversal move. Machine Learning 71, 265-305 (2008)
-
(2008)
Machine Learning
, vol.71
, pp. 265-305
-
-
Grzegorczyk, M.1
Husmeier, D.2
-
11
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197-243 (1995)
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
12
-
-
77958543971
-
Respecting Markov equivalence in computing posterior probabilities of causal graphical features
-
Kang, E.Y., Shpitser, I., Eskin, E.: Respecting Markov equivalence in computing posterior probabilities of causal graphical features. In: Proceeding of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 1175-1180 (2010)
-
(2010)
Proceeding of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI 2010)
, pp. 1175-1180
-
-
Kang, E.Y.1
Shpitser, I.2
Eskin, E.3
-
13
-
-
0026822833
-
Computational aspects of the Möbius transformation of graphs
-
Kennes, R.: Computational aspects of the Möbius transformation of graphs. IEEE Transaction on Systems, Man, and Cybernetics 22(2), 201-223 (1992)
-
(1992)
IEEE Transaction on Systems, Man, and Cybernetics
, vol.22
, Issue.2
, pp. 201-223
-
-
Kennes, R.1
-
15
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research 5, 549-573 (2004)
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
18
-
-
0003614273
-
-
Springer, Heidelberg
-
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, Heidelberg (2000)
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
19
-
-
0040731124
-
Causal inference in the presence of latent variables and selection bias
-
Spirtes, P., Meek, C., Richardson, T.: Causal inference in the presence of latent variables and selection bias. In: Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, UAI (1995)
-
Proceedings of the Eleventh Annual Conference on Uncertainty in Artificial Intelligence, UAI (1995)
-
-
Spirtes, P.1
Meek, C.2
Richardson, T.3
-
21
-
-
80053135734
-
Bayesian model averaging using the k-best Bayesian network structures
-
Tian, J., He, R., Ram, L.: Bayesian model averaging using the k-best Bayesian network structures. In: Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI (2010)
-
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI (2010)
-
-
Tian, J.1
He, R.2
Ram, L.3
|