메뉴 건너뛰기




Volumn 28, Issue 6, 2007, Pages 1747-1752

The use of artificial neural networks in materials science based research

Author keywords

Casting process; Computer modelling; Mechanical properties; Metal matrix composites; Neural networks

Indexed keywords

ENGINEERING RESEARCH; MATHEMATICAL MODELS; NEURAL NETWORKS;

EID: 34249723766     PISSN: 02613069     EISSN: 18734197     Source Type: Journal    
DOI: 10.1016/j.matdes.2007.02.009     Document Type: Note
Times cited : (248)

References (26)
  • 1
    • 33644613754 scopus 로고    scopus 로고
    • Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks
    • Altinkok N., and Koker R. Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Mater Des 27 8 (2006) 625-631
    • (2006) Mater Des , vol.27 , Issue.8 , pp. 625-631
    • Altinkok, N.1    Koker, R.2
  • 2
    • 2942625542 scopus 로고    scopus 로고
    • Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg) aluminium matrix composites
    • Altinkok N., and Koker R. Neural network approach to prediction of bending strength and hardening behaviour of particulate reinforced (Al-Si-Mg) aluminium matrix composites. Mater Des 25 7 (2004) 595-602
    • (2004) Mater Des , vol.25 , Issue.7 , pp. 595-602
    • Altinkok, N.1    Koker, R.2
  • 3
    • 11044225132 scopus 로고    scopus 로고
    • 3/SiC ceramic cake using artificial neural networks
    • 3/SiC ceramic cake using artificial neural networks. Mater Des 26 4 (2005) 305-311
    • (2005) Mater Des , vol.26 , Issue.4 , pp. 305-311
    • Altinkok, N.1    Koker, R.2
  • 4
    • 33750343158 scopus 로고    scopus 로고
    • Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms
    • Koker R., Altinkok N., and Demir A. Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater Des 28 2 (2007) 616-627
    • (2007) Mater Des , vol.28 , Issue.2 , pp. 616-627
    • Koker, R.1    Altinkok, N.2    Demir, A.3
  • 5
    • 33750350191 scopus 로고    scopus 로고
    • Artificial neural network application to the friction stir welding of aluminium plates
    • Okuyucu H., Kurt A., and Arcaklioglu E. Artificial neural network application to the friction stir welding of aluminium plates. Mater Des 28 1 (2007) 78-84
    • (2007) Mater Des , vol.28 , Issue.1 , pp. 78-84
    • Okuyucu, H.1    Kurt, A.2    Arcaklioglu, E.3
  • 8
    • 30144433338 scopus 로고    scopus 로고
    • Comment on "Prediction of the flow stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo steel during hot deformation" by R.H. Wu et al. [J. Mater. Process. Technol. 116 (2001) 211]
    • Sha W. Comment on "Prediction of the flow stress of 0.4C-1.9Cr-1.5Mn-1.0Ni-0.2Mo steel during hot deformation" by R.H. Wu et al. [J. Mater. Process. Technol. 116 (2001) 211]. J Mater Process Technol 171 2 (2006) 283-284
    • (2006) J Mater Process Technol , vol.171 , Issue.2 , pp. 283-284
    • Sha, W.1
  • 9
    • 1942498767 scopus 로고    scopus 로고
    • Comment on "Modeling of tribological properties of alumina fiber reinforced zinc-aluminium composites using artificial neural network" by K. Genel et al. [Mater. Sci. Eng. A 363 (2003) 203]
    • Sha W. Comment on "Modeling of tribological properties of alumina fiber reinforced zinc-aluminium composites using artificial neural network" by K. Genel et al. [Mater. Sci. Eng. A 363 (2003) 203]. Mater Sci Eng A 372 1-2 (2004) 334-335
    • (2004) Mater Sci Eng A , vol.372 , Issue.1-2 , pp. 334-335
    • Sha, W.1
  • 10
    • 33845188358 scopus 로고    scopus 로고
    • Optimisation of heat treatment technique of high-vanadium high-speed steel based on back propagation neural networks
    • Xu L., Xing J., Wei S., Zhang Y., and Long R. Optimisation of heat treatment technique of high-vanadium high-speed steel based on back propagation neural networks. Mater Des 28 5 (2007) 1425-1432
    • (2007) Mater Des , vol.28 , Issue.5 , pp. 1425-1432
    • Xu, L.1    Xing, J.2    Wei, S.3    Zhang, Y.4    Long, R.5
  • 11
    • 33845212848 scopus 로고    scopus 로고
    • Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminium alloy AA3004 using artificial neural networks
    • Forouzan S., and Akbarzadeh A. Prediction of effect of thermo-mechanical parameters on mechanical properties and anisotropy of aluminium alloy AA3004 using artificial neural networks. Mater Des 28 5 (2007) 1678-1684
    • (2007) Mater Des , vol.28 , Issue.5 , pp. 1678-1684
    • Forouzan, S.1    Akbarzadeh, A.2
  • 12
    • 33751321373 scopus 로고    scopus 로고
    • Optimisation of chemical composition of high speed steel with high vanadium content for abrasive wear using an artificial neural network
    • Xu L., Xing J., Wei S., Zhang Y., and Long R. Optimisation of chemical composition of high speed steel with high vanadium content for abrasive wear using an artificial neural network. Mater Des 28 3 (2007) 1031-1037
    • (2007) Mater Des , vol.28 , Issue.3 , pp. 1031-1037
    • Xu, L.1    Xing, J.2    Wei, S.3    Zhang, Y.4    Long, R.5
  • 13
    • 33845345593 scopus 로고    scopus 로고
    • Investigation of the physical and rheological properties of SBR1712 tyre rubber compounds and neural network approaches
    • Demirhan E., Kandemirli F., Kandemirli M., and Kovalishyn V. Investigation of the physical and rheological properties of SBR1712 tyre rubber compounds and neural network approaches. Mater Des 28 5 (2007) 1737-1741
    • (2007) Mater Des , vol.28 , Issue.5 , pp. 1737-1741
    • Demirhan, E.1    Kandemirli, F.2    Kandemirli, M.3    Kovalishyn, V.4
  • 14
    • 9744256988 scopus 로고    scopus 로고
    • Modelling beta transus temperature of titanium alloys using artificial neural network
    • Guo Z., Malinov S., and Sha W. Modelling beta transus temperature of titanium alloys using artificial neural network. Comp Mater Sci 32 1 (2005) 1-12
    • (2005) Comp Mater Sci , vol.32 , Issue.1 , pp. 1-12
    • Guo, Z.1    Malinov, S.2    Sha, W.3
  • 15
    • 0345359456 scopus 로고    scopus 로고
    • Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network
    • Guo Z., and Sha W. Modelling the correlation between processing parameters and properties of maraging steels using artificial neural network. Comp Mater Sci 29 1 (2004) 12-28
    • (2004) Comp Mater Sci , vol.29 , Issue.1 , pp. 12-28
    • Guo, Z.1    Sha, W.2
  • 16
    • 0034921649 scopus 로고    scopus 로고
    • Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network
    • Malinov S., Sha W., and McKeown J.J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comp Mater Sci 21 3 (2001) 375-394
    • (2001) Comp Mater Sci , vol.21 , Issue.3 , pp. 375-394
    • Malinov, S.1    Sha, W.2    McKeown, J.J.3
  • 17
    • 0036579053 scopus 로고    scopus 로고
    • Quantification of precipitation kinetics and age hardening of a Fe-12Ni-6Mn alloy during over ageing
    • Guo Z., and Sha W. Quantification of precipitation kinetics and age hardening of a Fe-12Ni-6Mn alloy during over ageing. Mater Sci Technol 18 5 (2002) 529-533
    • (2002) Mater Sci Technol , vol.18 , Issue.5 , pp. 529-533
    • Guo, Z.1    Sha, W.2
  • 18
    • 0036599920 scopus 로고    scopus 로고
    • Quantification of precipitation hardening and evolution of precipitates
    • Guo Z., and Sha W. Quantification of precipitation hardening and evolution of precipitates. Mater Trans 43 6 (2002) 1273-1282
    • (2002) Mater Trans , vol.43 , Issue.6 , pp. 1273-1282
    • Guo, Z.1    Sha, W.2
  • 19
    • 0036545220 scopus 로고    scopus 로고
    • Modelling of precipitation kinetics and age hardening of Fe-12Ni-6Mn maraging type alloy
    • Guo Z., and Sha W. Modelling of precipitation kinetics and age hardening of Fe-12Ni-6Mn maraging type alloy. Mater Sci Technol 18 4 (2002) 377-382
    • (2002) Mater Sci Technol , vol.18 , Issue.4 , pp. 377-382
    • Guo, Z.1    Sha, W.2
  • 21
    • 84903342530 scopus 로고    scopus 로고
    • Crystal structures and lattice parameters of allotropes of the metallic elements. In: ASM handbook. Alloy phase diagrams, vol. 3. Materials Park (OH): ASM International; 1992. p. 4-10.
  • 22
    • 33750496594 scopus 로고    scopus 로고
    • Gasars: a class of metallic materials with ordered porosity
    • Drenchev L., Sobczak J., Malinov S., and Sha W. Gasars: a class of metallic materials with ordered porosity. Mater Sci Technol 22 10 (2006) 1135-1147
    • (2006) Mater Sci Technol , vol.22 , Issue.10 , pp. 1135-1147
    • Drenchev, L.1    Sobczak, J.2    Malinov, S.3    Sha, W.4
  • 23
    • 1642420352 scopus 로고    scopus 로고
    • Compressibility and compactability of metal powders
    • ASM handbook. Rev. and updated ed., ASM International, Materials Park (OH)
    • Lampman S. Compressibility and compactability of metal powders. ASM handbook. Rev. and updated ed. Powder metal technologies and applications vol. 7 (1998), ASM International, Materials Park (OH) 302-309
    • (1998) Powder metal technologies and applications , vol.7 , pp. 302-309
    • Lampman, S.1
  • 24
    • 0000600439 scopus 로고    scopus 로고
    • Indentation hardness testing of ceramics
    • ASM handbook. Rev. ed., ASM International, Materials Park (OH)
    • Quinn G.D. Indentation hardness testing of ceramics. ASM handbook. Rev. ed. Mechanical testing and evaluation vol. 8 (2000), ASM International, Materials Park (OH) 244-251
    • (2000) Mechanical testing and evaluation , vol.8 , pp. 244-251
    • Quinn, G.D.1
  • 25
    • 33845310302 scopus 로고    scopus 로고
    • Response to Sha's comment on our article titled "Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network"
    • Genel K., Kurnaz S.C., and Durman D. Response to Sha's comment on our article titled "Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network". Mater Sci Eng A 379 1-2 (2004) 457-458
    • (2004) Mater Sci Eng A , vol.379 , Issue.1-2 , pp. 457-458
    • Genel, K.1    Kurnaz, S.C.2    Durman, D.3
  • 26
    • 33845329549 scopus 로고    scopus 로고
    • Response to comment on 'Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms'
    • Kito S., and Hattori T. Response to comment on 'Design of a propane ammoxidation catalyst using artificial neural networks and genetic algorithms'. Ind Eng Chem Res 45 24 (2006) 8225-8226
    • (2006) Ind Eng Chem Res , vol.45 , Issue.24 , pp. 8225-8226
    • Kito, S.1    Hattori, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.