메뉴 건너뛰기




Volumn 4, Issue 4, 2011, Pages 619-633

Fuzzy mutual information based min-redundancy and max-relevance heterogeneous feature selection

Author keywords

Feature selection; Fuzzy mutual information; Redundancy; Relevance; Stability

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); CONVERGENCE OF NUMERICAL METHODS; LEARNING SYSTEMS; REDUNDANCY;

EID: 80052244766     PISSN: 18756891     EISSN: 18756883     Source Type: Journal    
DOI: 10.1080/18756891.2011.9727817     Document Type: Article
Times cited : (48)

References (47)
  • 1
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5:531–549.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 531-549
    • Battiti, R.1
  • 4
    • 34249753618 scopus 로고
    • Support vector networks
    • Corts, C., and Vapnik, V., 1995. Support vector networks. Machine Learning, 20:1–25.
    • (1995) Machine Learning , vol.20 , pp. 1-25
    • Corts, C.1    Vapnik, V.2
  • 6
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash, M., and Liu, H., 2003. Consistency-based search in feature selection. Artificial Intelligence, 151:155–176.
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 7
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • David, A. B., and Wang, H., 2000. A formalism for relevance and its application in feature subset selection. Machine Learning, 41:175–195.
    • (2000) Machine Learning , vol.41 , pp. 175-195
    • David, A.B.1    Wang, H.2
  • 12
    • 34547699509 scopus 로고    scopus 로고
    • Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
    • Hu, Q. H., Xie, Z. X., and Yu, D. R., 2007. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition, 40:3509–3521.
    • (2007) Pattern Recognition , vol.40 , pp. 3509-3521
    • Hu, Q.H.1    Xie, Z.X.2    Yu, D.R.3
  • 13
    • 32644440353 scopus 로고    scopus 로고
    • Informationpreserving hybrid data reduction based on fuzzyrough techniques
    • Hu, Q. H., Yu, D. R., and Xie, Z. X., 2006. Informationpreserving hybrid data reduction based on fuzzyrough techniques. Pattern Recognition Letters, 27:414–423.
    • (2006) Pattern Recognition Letters , vol.27 , pp. 414-423
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 15
    • 34248647608 scopus 로고    scopus 로고
    • Stability of feature selection algorithms: A study on highdimensional spaces
    • Kalousis, A., Prados, J., and Hilario, M., 2007. Stability of feature selection algorithms:a study on highdimensional spaces. Knowledge and Information Systems, 12:95–116.
    • (2007) Knowledge and Information Systems , vol.12 , pp. 95-116
    • Kalousis, A.1    Prados, J.2    Hilario, M.3
  • 16
    • 43249111682 scopus 로고    scopus 로고
    • An efficient ant colony optimization approach to attribute reduction in rough set theory
    • Ke, L. J., Feng, Z. R., and Ren, Z. G., 2008. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters, 29:1351–1357.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1351-1357
    • Ke, L.J.1    Feng, Z.R.2    Ren, Z.G.3
  • 17
    • 84992726552 scopus 로고
    • Estimating Attributes: Analysis and Extensions of RELIEF
    • Kononenko, I., 1994. Estimating Attributes:Analysis and Extensions of RELIEF. European Conference on Machine Learning,:171–182.
    • (1994) European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 19
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N., and Choi, C.-H., 2002. Input feature selection for classification problems. IEEE Transaction on Neural Networks, 13:143–159.
    • (2002) IEEE Transaction on Neural Networks , vol.13 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 22
    • 35648962850 scopus 로고    scopus 로고
    • Localized feature selection for clustering
    • Li, Y. H., Dong, M., and Hua, J., 2008. Localized feature selection for clustering. Pattern Recognition Letters, 29:10–18.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 10-18
    • Li, Y.H.1    Dong, M.2    Hua, J.3
  • 24
    • 25444528240 scopus 로고    scopus 로고
    • An entropybased gene selection method for cancer classification using microarray data
    • Liu, X. X., Krishnan, A., and Mondry, A., 2005. An entropybased gene selection method for cancer classification using microarray data. BMC Bioinformatics, 6:1–14.
    • (2005) BMC Bioinformatics , vol.6 , pp. 1-14
    • Liu, X.X.1    Krishnan, A.2    Mondry, A.3
  • 26
    • 0017535866 scopus 로고    scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra, P., and Fukunaga, K., 1997. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, 26:917–922.
    • (1997) IEEE Transactions on Computers , vol.26 , pp. 917-922
    • Narendra, P.1    Fukunaga, K.2
  • 27
    • 0038136319 scopus 로고
    • A generalized k-nearest neighbor rule
    • Patrick, E. A., and Fisher, F. P., 1970. A generalized k-nearest neighbor rule. Information and Control, 16:128–152.
    • (1970) Information and Control , vol.16 , pp. 128-152
    • Patrick, E.A.1    Fisher, F.P.2
  • 28
    • 0043012390 scopus 로고
    • Dependency of attributes in information systems
    • Pawlak, Z., and Rauszer, C., 1985. Dependency of attributes in information systems. Bull. Polish Acad. Sci. Math., 33:551–559.
    • (1985) Bull. Polish Acad. Sci. Math. , vol.33 , pp. 551-559
    • Pawlak, Z.1    Rauszer, C.2
  • 29
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • Peng, H. C., Long, F. H., and Ding, C., 2005. Feature selection based on mutual information:criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1226–1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 32
    • 46849106744 scopus 로고    scopus 로고
    • Consistency measure, inclusion degree and fuzzy measure in decision tables
    • Qian, Y. H., Liang, J. Y., and Dang, C. G., 2008. Consistency measure, inclusion degree and fuzzy measure in decision tables. Fuzzy Sets and Systems, 159:2353–2377.
    • (2008) Fuzzy Sets and Systems , vol.159 , pp. 2353-2377
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.G.3
  • 33
    • 43049151492 scopus 로고    scopus 로고
    • On the evaluation of the decision performance of an incomplete decision table
    • Qian, Y. H., Liang, J. Y., Dang, C. G., Zhang, H. Y., and Ma, J. M., 2008. On the evaluation of the decision performance of an incomplete decision table. Data and Knowledge Engineering, 65:373–400.
    • (2008) Data and Knowledge Engineering , vol.65 , pp. 373-400
    • Qian, Y.H.1    Liang, J.Y.2    Dang, C.G.3    Zhang, H.Y.4    Ma, J.M.5
  • 35
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423.
    • (1948) The Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 36
    • 2442528339 scopus 로고    scopus 로고
    • Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
    • Shen, Q., and Jensen, R., 2004. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition, 37:1351–1363.
    • (2004) Pattern Recognition , vol.37 , pp. 1351-1363
    • Shen, Q.1    Jensen, R.2
  • 37
    • 45449112561 scopus 로고    scopus 로고
    • The peaking phenomenon in the presence of feature-selection
    • Sima, C., and Dougherty, E. R., 2008. The peaking phenomenon in the presence of feature-selection. Pattern Recognition Letters, 29:1667–1674.
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1667-1674
    • Sima, C.1    Dougherty, E.R.2
  • 40
    • 61349107414 scopus 로고    scopus 로고
    • A feature selection method using a fuzzy mutual information measure
    • Berlin / Heidelberg: Springer
    • Suarez, M. R., Vilar, J. R., and Grande, J., 2007. “ A feature selection method using a fuzzy mutual information measure ”. In Advances in Soft Computing, Vol. 44, 56–63. Berlin / Heidelberg:Springer.
    • (2007) Advances in Soft Computing , vol.44 , pp. 56-63
    • Suarez, M.R.1    Vilar, J.R.2    Grande, J.3
  • 41
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Swiniarski, R. W., and Skowron, A., 2003. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24:833–849.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 42
    • 33846088965 scopus 로고    scopus 로고
    • Feature selection algorithm for mixed data with both nominal and continuous features
    • Tang, W. Y., and Mao, K. Z., 2007. Feature selection algorithm for mixed data with both nominal and continuous features. Pattern Recognition Letters, 28:563–571.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 563-571
    • Tang, W.Y.1    Mao, K.Z.2
  • 43
    • 0141920328 scopus 로고    scopus 로고
    • A quantitative method for evaluating the performances of hyperspectral image fusion
    • Wang, Q., Shen, Y., and Zhang, Y., 2003. A quantitative method for evaluating the performances of hyperspectral image fusion. IEEE transactions on Instrumentation and Measurement, 52:1041–1047.
    • (2003) IEEE transactions on Instrumentation and Measurement , vol.52 , pp. 1041-1047
    • Wang, Q.1    Shen, Y.2    Zhang, Y.3
  • 44
    • 12244308530 scopus 로고    scopus 로고
    • Nonlinear correlation measure for multivariable data set
    • Wang, Q., Shen, Y., and Zhang, J. Q., 2005. Nonlinear correlation measure for multivariable data set. PhysicaDNonlinear Phenomena, 200:287–295.
    • (2005) PhysicaDNonlinear Phenomena , vol.200 , pp. 287-295
    • Wang, Q.1    Shen, Y.2    Zhang, J.Q.3
  • 46
    • 37249058009 scopus 로고    scopus 로고
    • Attribute reduction based on evidence theory in incomplete decision systems
    • Wu, W. Z., 2008. Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences, 178:1355–1371.
    • (2008) Information Sciences , vol.178 , pp. 1355-1371
    • Wu, W.Z.1
  • 47
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu, L., and Liu, H., 2004. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5:1205–1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.