-
1
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti, R., 1994. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5:531–549.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 531-549
-
-
Battiti, R.1
-
2
-
-
0029345982
-
Classdependent discretization for inductive learning form continuous and mixed-mode data
-
Ching, J. Y., Wong, A. K. C., and Chan, K. C. C., 1995. Classdependent discretization for inductive learning form continuous and mixed-mode data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17:641–651.
-
(1995)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.17
, pp. 641-651
-
-
Ching, J.Y.1
Wong, A.K.C.2
Chan, K.C.C.3
-
4
-
-
34249753618
-
Support vector networks
-
Corts, C., and Vapnik, V., 1995. Support vector networks. Machine Learning, 20:1–25.
-
(1995)
Machine Learning
, vol.20
, pp. 1-25
-
-
Corts, C.1
Vapnik, V.2
-
5
-
-
84942213019
-
The best two independent measurements are not the two best
-
Cover, T. M., 1974. The best two independent measurements are not the two best. IEEE Transactions on Systems, Man, and Cybernetics, 4:116–117.
-
(1974)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.4
, pp. 116-117
-
-
Cover, T.M.1
-
6
-
-
0242302657
-
Consistency-based search in feature selection
-
Dash, M., and Liu, H., 2003. Consistency-based search in feature selection. Artificial Intelligence, 151:155–176.
-
(2003)
Artificial Intelligence
, vol.151
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
7
-
-
0034324043
-
A formalism for relevance and its application in feature subset selection
-
David, A. B., and Wang, H., 2000. A formalism for relevance and its application in feature subset selection. Machine Learning, 41:175–195.
-
(2000)
Machine Learning
, vol.41
, pp. 175-195
-
-
David, A.B.1
Wang, H.2
-
8
-
-
84960463485
-
-
Proceeding of the 2003 IEEE Computational Systems Bioinformatics Conference, Stanford, California.
-
Ding, C., and Peng, H. C., Minimum redundancy feature selection from microarray gene expression data. Proceeding of the 2003 IEEE Computational Systems Bioinformatics Conference. Stanford, California. pp. 523–528.
-
Minimum redundancy feature selection from microarray gene expression data
, pp. 523-528
-
-
Ding, C.1
Peng, H.C.2
-
9
-
-
0003472470
-
-
New York: Wiley
-
Duda, R., Hart, P., and Stork, D., 2001. Pattern classification and scene analysis, New York:Wiley.
-
(2001)
Pattern classification and scene analysis
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
10
-
-
10044224476
-
-
Proceedings of the 17th International Conference on Pattern Recognition, UK.
-
Farmer, M. E., Bapna, S., and Jain, A. K., Large scale feature selection using modified random mutation hill climbing. Proceedings of the 17th International Conference on Pattern Recognition. UK. Vol. 2, pp. 287–290.
-
Large scale feature selection using modified random mutation hill climbing
, vol.2
, pp. 287-290
-
-
Farmer, M.E.1
Bapna, S.2
Jain, A.K.3
-
12
-
-
34547699509
-
Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation
-
Hu, Q. H., Xie, Z. X., and Yu, D. R., 2007. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition, 40:3509–3521.
-
(2007)
Pattern Recognition
, vol.40
, pp. 3509-3521
-
-
Hu, Q.H.1
Xie, Z.X.2
Yu, D.R.3
-
13
-
-
32644440353
-
Informationpreserving hybrid data reduction based on fuzzyrough techniques
-
Hu, Q. H., Yu, D. R., and Xie, Z. X., 2006. Informationpreserving hybrid data reduction based on fuzzyrough techniques. Pattern Recognition Letters, 27:414–423.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 414-423
-
-
Hu, Q.H.1
Yu, D.R.2
Xie, Z.X.3
-
14
-
-
44649134685
-
-
Berlin/Heidelberg: Springer, Lecture Notes in Computer Science
-
Hu, Q. H., Liu, J. F., and Yu, D. R., 2008. Stability Analysis on Rough Set Based Feature Evaluation, Vol. 5009, 88–96. Berlin/Heidelberg:Springer. Lecture Notes in Computer Science
-
(2008)
Stability Analysis on Rough Set Based Feature Evaluation
, vol.5009
, pp. 88-96
-
-
Hu, Q.H.1
Liu, J.F.2
Yu, D.R.3
-
15
-
-
34248647608
-
Stability of feature selection algorithms: A study on highdimensional spaces
-
Kalousis, A., Prados, J., and Hilario, M., 2007. Stability of feature selection algorithms:a study on highdimensional spaces. Knowledge and Information Systems, 12:95–116.
-
(2007)
Knowledge and Information Systems
, vol.12
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
16
-
-
43249111682
-
An efficient ant colony optimization approach to attribute reduction in rough set theory
-
Ke, L. J., Feng, Z. R., and Ren, Z. G., 2008. An efficient ant colony optimization approach to attribute reduction in rough set theory. Pattern Recognition Letters, 29:1351–1357.
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 1351-1357
-
-
Ke, L.J.1
Feng, Z.R.2
Ren, Z.G.3
-
17
-
-
84992726552
-
Estimating Attributes: Analysis and Extensions of RELIEF
-
Kononenko, I., 1994. Estimating Attributes:Analysis and Extensions of RELIEF. European Conference on Machine Learning,:171–182.
-
(1994)
European Conference on Machine Learning
, pp. 171-182
-
-
Kononenko, I.1
-
19
-
-
0036127473
-
Input feature selection for classification problems
-
Kwak, N., and Choi, C.-H., 2002. Input feature selection for classification problems. IEEE Transaction on Neural Networks, 13:143–159.
-
(2002)
IEEE Transaction on Neural Networks
, vol.13
, pp. 143-159
-
-
Kwak, N.1
Choi, C.-H.2
-
20
-
-
0035359279
-
An efficient fuzzy classifier with feature selection based on fuzzy information entropy
-
Lee, H.-M., M Chen, C.-, Chen, J.-M., and Jou, Y.-L., 1999. An efficient fuzzy classifier with feature selection based on fuzzy information entropy. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics, 31:426–432.
-
(1999)
IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
, vol.31
, pp. 426-432
-
-
Lee, H.-M.1
Chen, C.-M.2
Chen, J.-M.3
Jou, Y.-L.4
-
21
-
-
82955202130
-
-
New York: Chapman and Hall
-
Leo, B., Jerome, H. F., Richard, A. O., and Charls, J. S., 1993. Classification and regression trees, New York:Chapman and Hall.
-
(1993)
Classification and regression trees
-
-
Leo, B.1
Jerome, H.F.2
Richard, A.O.3
Charls, J.S.4
-
22
-
-
35648962850
-
Localized feature selection for clustering
-
Li, Y. H., Dong, M., and Hua, J., 2008. Localized feature selection for clustering. Pattern Recognition Letters, 29:10–18.
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 10-18
-
-
Li, Y.H.1
Dong, M.2
Hua, J.3
-
24
-
-
25444528240
-
An entropybased gene selection method for cancer classification using microarray data
-
Liu, X. X., Krishnan, A., and Mondry, A., 2005. An entropybased gene selection method for cancer classification using microarray data. BMC Bioinformatics, 6:1–14.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 1-14
-
-
Liu, X.X.1
Krishnan, A.2
Mondry, A.3
-
26
-
-
0017535866
-
A branch and bound algorithm for feature subset selection
-
Narendra, P., and Fukunaga, K., 1997. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, 26:917–922.
-
(1997)
IEEE Transactions on Computers
, vol.26
, pp. 917-922
-
-
Narendra, P.1
Fukunaga, K.2
-
28
-
-
0043012390
-
Dependency of attributes in information systems
-
Pawlak, Z., and Rauszer, C., 1985. Dependency of attributes in information systems. Bull. Polish Acad. Sci. Math., 33:551–559.
-
(1985)
Bull. Polish Acad. Sci. Math.
, vol.33
, pp. 551-559
-
-
Pawlak, Z.1
Rauszer, C.2
-
29
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
Peng, H. C., Long, F. H., and Ding, C., 2005. Feature selection based on mutual information:criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27:1226–1238.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 1226-1238
-
-
Peng, H.C.1
Long, F.H.2
Ding, C.3
-
31
-
-
0028547556
-
Floating search methods in feature selection
-
Pudil, P., Novovicova, J., and Kittler, J., 1994. Floating search methods in feature selection. Pattern Recognition Letters, 15:1119–1125.
-
(1994)
Pattern Recognition Letters
, vol.15
, pp. 1119-1125
-
-
Pudil, P.1
Novovicova, J.2
Kittler, J.3
-
32
-
-
46849106744
-
Consistency measure, inclusion degree and fuzzy measure in decision tables
-
Qian, Y. H., Liang, J. Y., and Dang, C. G., 2008. Consistency measure, inclusion degree and fuzzy measure in decision tables. Fuzzy Sets and Systems, 159:2353–2377.
-
(2008)
Fuzzy Sets and Systems
, vol.159
, pp. 2353-2377
-
-
Qian, Y.H.1
Liang, J.Y.2
Dang, C.G.3
-
33
-
-
43049151492
-
On the evaluation of the decision performance of an incomplete decision table
-
Qian, Y. H., Liang, J. Y., Dang, C. G., Zhang, H. Y., and Ma, J. M., 2008. On the evaluation of the decision performance of an incomplete decision table. Data and Knowledge Engineering, 65:373–400.
-
(2008)
Data and Knowledge Engineering
, vol.65
, pp. 373-400
-
-
Qian, Y.H.1
Liang, J.Y.2
Dang, C.G.3
Zhang, H.Y.4
Ma, J.M.5
-
35
-
-
84940644968
-
A mathematical theory of communication
-
Shannon, C. E., 1948. A mathematical theory of communication. The Bell System Technical Journal, 27:379–423.
-
(1948)
The Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
36
-
-
2442528339
-
Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring
-
Shen, Q., and Jensen, R., 2004. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognition, 37:1351–1363.
-
(2004)
Pattern Recognition
, vol.37
, pp. 1351-1363
-
-
Shen, Q.1
Jensen, R.2
-
37
-
-
45449112561
-
The peaking phenomenon in the presence of feature-selection
-
Sima, C., and Dougherty, E. R., 2008. The peaking phenomenon in the presence of feature-selection. Pattern Recognition Letters, 29:1667–1674.
-
(2008)
Pattern Recognition Letters
, vol.29
, pp. 1667-1674
-
-
Sima, C.1
Dougherty, E.R.2
-
38
-
-
0033220764
-
Adaptive floating search methods in feature selection
-
Somol, P., Pudil, P., Novoviova, J., and Paclik, P., 1999. Adaptive floating search methods in feature selection. Pattern Recognition Letters, 20:1157–1163.
-
(1999)
Pattern Recognition Letters
, vol.20
, pp. 1157-1163
-
-
Somol, P.1
Pudil, P.2
Novoviova, J.3
Paclik, P.4
-
39
-
-
3042527351
-
Fast branch and bound algorithms for optimal feature selection
-
Somol, P., Pudil, P., and Kittler, J., 2004. Fast branch and bound algorithms for optimal feature selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26:900–912.
-
(2004)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.26
, pp. 900-912
-
-
Somol, P.1
Pudil, P.2
Kittler, J.3
-
40
-
-
61349107414
-
A feature selection method using a fuzzy mutual information measure
-
Berlin / Heidelberg: Springer
-
Suarez, M. R., Vilar, J. R., and Grande, J., 2007. “ A feature selection method using a fuzzy mutual information measure ”. In Advances in Soft Computing, Vol. 44, 56–63. Berlin / Heidelberg:Springer.
-
(2007)
Advances in Soft Computing
, vol.44
, pp. 56-63
-
-
Suarez, M.R.1
Vilar, J.R.2
Grande, J.3
-
41
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Swiniarski, R. W., and Skowron, A., 2003. Rough set methods in feature selection and recognition. Pattern Recognition Letters, 24:833–849.
-
(2003)
Pattern Recognition Letters
, vol.24
, pp. 833-849
-
-
Swiniarski, R.W.1
Skowron, A.2
-
42
-
-
33846088965
-
Feature selection algorithm for mixed data with both nominal and continuous features
-
Tang, W. Y., and Mao, K. Z., 2007. Feature selection algorithm for mixed data with both nominal and continuous features. Pattern Recognition Letters, 28:563–571.
-
(2007)
Pattern Recognition Letters
, vol.28
, pp. 563-571
-
-
Tang, W.Y.1
Mao, K.Z.2
-
43
-
-
0141920328
-
A quantitative method for evaluating the performances of hyperspectral image fusion
-
Wang, Q., Shen, Y., and Zhang, Y., 2003. A quantitative method for evaluating the performances of hyperspectral image fusion. IEEE transactions on Instrumentation and Measurement, 52:1041–1047.
-
(2003)
IEEE transactions on Instrumentation and Measurement
, vol.52
, pp. 1041-1047
-
-
Wang, Q.1
Shen, Y.2
Zhang, Y.3
-
44
-
-
12244308530
-
Nonlinear correlation measure for multivariable data set
-
Wang, Q., Shen, Y., and Zhang, J. Q., 2005. Nonlinear correlation measure for multivariable data set. PhysicaDNonlinear Phenomena, 200:287–295.
-
(2005)
PhysicaDNonlinear Phenomena
, vol.200
, pp. 287-295
-
-
Wang, Q.1
Shen, Y.2
Zhang, J.Q.3
-
45
-
-
77951731049
-
LiN-grams based feature selection and text representation for Chinese Text Classification
-
Wei, Z. H., Miao, D. Q., Chauchat, J.-H., and Wen, R. Z., 2009. LiN-grams based feature selection and text representation for Chinese Text Classification. International Journal of Computational Intelligence Systems, 2:365–374.
-
(2009)
International Journal of Computational Intelligence Systems
, vol.2
, pp. 365-374
-
-
Wei, Z.H.1
Miao, D.Q.2
Chauchat, J.-H.3
Wen, R.Z.4
-
46
-
-
37249058009
-
Attribute reduction based on evidence theory in incomplete decision systems
-
Wu, W. Z., 2008. Attribute reduction based on evidence theory in incomplete decision systems. Information Sciences, 178:1355–1371.
-
(2008)
Information Sciences
, vol.178
, pp. 1355-1371
-
-
Wu, W.Z.1
-
47
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Yu, L., and Liu, H., 2004. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5:1205–1224.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
|