-
1
-
-
0034570871
-
Correspondence analysis of genes and tissue types and finding genetic links from microarray data
-
H. Kishino and P. Waddell, "Correspondence analysis of genes and tissue types and finding genetic links from microarray data", GENOME INFORMATICS SERIES, pp. 83-95, 2000.
-
(2000)
GENOME INFORMATICS SERIES
, pp. 83-95
-
-
Kishino, H.1
Waddell, P.2
-
2
-
-
8444245968
-
Temporal aggregation bias and inference of causal regulatory networks
-
DOI 10.1089/cmb.2004.11.971
-
S. Bay, L. Chrisman, A. Pohorille, and J. Shrager, "Temporal aggregation bias and inference of causal regulatory networks", Journal of Computational Biology, vol. 11, no. 5, pp. 971-985, 2004. (Pubitemid 39488545)
-
(2004)
Journal of Computational Biology
, vol.11
, Issue.5
, pp. 971-985
-
-
Bay, S.D.1
Chrisman, L.2
Pohorille, A.3
Shrager, J.4
-
4
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er, "Using Bayesian networks to analyze expression data", Journal of computational biology, vol. 7, no. 3-4, pp. 601-620, 2000.
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
5
-
-
50249112012
-
Causal modeling of gene regulatory network
-
IEEE
-
R. Ram, M. Chetty, and T. Dix, "Causal Modeling of Gene Regulatory Network", In Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB'06. 2006 IEEE Symposium on, pp. 1-8, IEEE, 2006.
-
(2006)
Computational Intelligence and Bioinformatics and Computational Biology, 2006. CIBCB'06. 2006 IEEE Symposium on
, pp. 1-8
-
-
Ram, R.1
Chetty, M.2
Dix, T.3
-
6
-
-
3042738945
-
Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
DOI 10.1016/j.biosystems.2004.03.004, PII S0303264704000383
-
S. Kim, S. Imoto, and S. Miyano, "Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data", Biosystems, vol. 75, no. 1-3, pp. 57-65, 2004. (Pubitemid 38887551)
-
(2004)
BioSystems
, vol.75
, Issue.1-3
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
8
-
-
4143058645
-
Gene networks inference using dynamic Bayesian networks
-
B. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d'Alché Buc, "Gene networks inference using dynamic Bayesian networks", Bioinformatics, vol. 19, no. suppl 2, p. ii138, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.2 SUPPL.
-
-
Perrin, B.1
Ralaivola, L.2
Mazurie, A.3
Bottani, S.4
Mallet, J.5
D'Alché Buc, F.6
-
10
-
-
43849084374
-
Inferring connectivity of genetic regulatory networks using information-theoretic criteria
-
W. Zhao, E. Serpedin, and E. Dougherty, "Inferring connectivity of genetic regulatory networks using information-theoretic criteria", IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 262-274, 2007.
-
(2007)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, pp. 262-274
-
-
Zhao, W.1
Serpedin, E.2
Dougherty, E.3
-
11
-
-
77952663448
-
TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
-
P. Zoppoli, S. Morganella, and M. Ceccarelli, "TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach", BMC bioinformatics, vol. 11, no. 1, p. 154, 2010.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 154
-
-
Zoppoli, P.1
Morganella, S.2
Ceccarelli, M.3
-
12
-
-
33947305781
-
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
A. Margolin, I. Nemenman, K. Basso, C. Wiggins, G. Stolovitzky, R. Favera, and A. Califano, "ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context", BMC bioinformatics, vol. 7, no. Suppl 1, p. S7, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1 SUPPL.
-
-
Margolin, A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Favera, R.6
Califano, A.7
-
13
-
-
34547258546
-
Fuzzy model for gene regulatory network
-
1688479, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
-
R. Ram, M. Chetty, and T. Dix, "Fuzzy model for gene regulatory network", In Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, pp. 1450-1455, IEEE, 2006. (Pubitemid 47130668)
-
(2006)
2006 IEEE Congress on Evolutionary Computation, CEC 2006
, pp. 1450-1455
-
-
Ram, E.1
Chetty, M.2
Dix, T.I.3
-
14
-
-
0034863951
-
Inferring a system of differential equations for a gene regulatory network by using genetic programming
-
E. Sakamoto and H. Iba, "Inferring a system of differential equations for a gene regulatory network by using genetic programming", In Evolutionary Computation, 2001. Proceedings of the 2001 Congress on, vol. 1, pp. 720-726, IEEE, 2001. (Pubitemid 32806409)
-
(2001)
Proceedings of the IEEE Conference on Evolutionary Computation, ICEC
, vol.1
, pp. 720-726
-
-
Sakamoto, E.1
Iba, H.2
-
17
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
Citeseer
-
N. Friedman, K. Murphy, and S. Russell, "Learning the structure of dynamic probabilistic networks", In Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI98), pp. 139-147, Citeseer, 1998.
-
(1998)
Proc. Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI98)
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
18
-
-
70349303945
-
Measuring network security using dynamic bayesian network
-
ACM
-
M. Frigault, L. Wang, A. Singhal, and S. Jajodia, "Measuring network security using dynamic bayesian network", In Proceedings of the 4th ACM workshop on Quality of protection, pp. 23-30, ACM, 2008.
-
(2008)
Proceedings of the 4th ACM Workshop on Quality of Protection
, pp. 23-30
-
-
Frigault, M.1
Wang, L.2
Singhal, A.3
Jajodia, S.4
-
19
-
-
77953891990
-
A novel gene network inference algorithm using predictive minimum description length approach
-
V. Chaitankar, P. Ghosh, E. Perkins, P. Gong, Y. Deng, and C. Zhang, "A novel gene network inference algorithm using predictive minimum description length approach", BMC Systems Biology, vol. 4, no. Suppl 1, p. S7, 2010.
-
(2010)
BMC Systems Biology
, vol.4
, Issue.1 SUPPL.
-
-
Chaitankar, V.1
Ghosh, P.2
Perkins, E.3
Gong, P.4
Deng, Y.5
Zhang, C.6
-
20
-
-
84889281816
-
-
Wiley Online Library
-
T. Cover, J. Thomas, J. Wiley, et al., Elements of information theory, vol. 306. Wiley Online Library, 1991.
-
(1991)
Elements of Information Theory
, vol.306
-
-
Cover, T.1
Thomas, J.2
Wiley, J.3
-
21
-
-
33750071718
-
A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
-
L. de Campos, "A scoring function for learning Bayesian networks based on mutual information and conditional independence tests", The Journal of Machine Learning Research, vol. 7, pp. 2149-2187, 2006. (Pubitemid 44582045)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2149-2187
-
-
De Campos, L.M.1
-
24
-
-
33644687212
-
Inference of gene regulatory networks by means of dynamic differential bayesian networks and nonparametric regression
-
N. Sugimoto and H. Iba, "Inference of gene regulatory networks by means of dynamic differential bayesian networks and nonparametric regression", GENOME INFORMATICS SERIES, vol. 15, no. 2, p. 121, 2004.
-
(2004)
GENOME INFORMATICS SERIES
, vol.15
, Issue.2
, pp. 121
-
-
Sugimoto, N.1
Iba, H.2
-
26
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood, "Exact Bayesian structure discovery in Bayesian networks", The Journal of Machine Learning Research, vol. 5, pp. 549-573, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
27
-
-
36248948496
-
Inferring gene regulatory networks using differential evolution with local search heuristics
-
DOI 10.1109/TCBB.2007.1058
-
N. Noman and H. Iba, "Inferring gene regulatory networks using differential evolution with local search heuristics", IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 634-647, 2007. (Pubitemid 350125886)
-
(2007)
IEEE/ACM Transactions on Computational Biology and Bioinformatics
, vol.4
, Issue.4
, pp. 634-647
-
-
Noman, N.1
Iba, H.2
-
28
-
-
63049128934
-
A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
-
I. Cantone, L. Marucci, F. Iorio, M. Ricci, V. Belcastro, M. Bansal, S. Santini, M. Di Bernardo, D. Di Bernardo, and M. Cosma, "A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches", Cell, vol. 137, no. 1, pp. 172-181, 2009.
-
(2009)
Cell
, vol.137
, Issue.1
, pp. 172-181
-
-
Cantone, I.1
Marucci, L.2
Iorio, F.3
Ricci, M.4
Belcastro, V.5
Bansal, M.6
Santini, S.7
Di Bernardo, M.8
Di Bernardo, D.9
Cosma, M.10
-
29
-
-
44849118743
-
Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering
-
G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. Di Bernardo, "Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering", Genome research, vol. 18, no. 6, p. 939, 2008.
-
(2008)
Genome Research
, vol.18
, Issue.6
, pp. 939
-
-
Gatta, G.D.1
Bansal, M.2
Ambesi-Impiombato, A.3
Antonini, D.4
Missero, C.5
Di Bernardo, D.6
-
30
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
J. Yu, V. Smith, P. Wang, A. Hartemink, and E. Jarvis, "Advances to Bayesian network inference for generating causal networks from observational biological data", Bioinformatics, vol. 20, no. 18, p. 3594, 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.18
, pp. 3594
-
-
Yu, J.1
Smith, V.2
Wang, P.3
Hartemink, A.4
Jarvis, E.5
|