메뉴 건너뛰기




Volumn , Issue , 2006, Pages 132-139

Causal modeling of gene regulatory network

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOCOMMUNICATIONS; BIOELECTRIC PHENOMENA; DATA REDUCTION; FLOW INTERACTIONS; GENE EXPRESSION; GENES; GENETIC ALGORITHMS; INFERENCE ENGINES; INFORMATION SCIENCE; INTELLIGENT CONTROL; LAWS AND LEGISLATION;

EID: 50249112012     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIBCB.2006.330982     Document Type: Conference Paper
Times cited : (16)

References (27)
  • 3
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E.coli from time series expression profiles
    • M. Ong, J. D. Glasner and D. Page, "Modelling regulatory pathways in E.coli from time series expression profiles," Bioinformatics, Vol 18, pp S241-S248, 2002.
    • (2002) Bioinformatics , vol.18
    • Ong, M.1    Glasner, J.D.2    Page, D.3
  • 4
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architecture
    • S. Liang, S. Fuhrman and R. Somogyi, "REVEAL, a general reverse engineering algorithm for inference of genetic network architecture," Pacific Symposium on Biocomputing, Vol 3, pp 18-29, 1998.
    • (1998) Pacific Symposium on Biocomputing , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 6
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data
    • I. C. Yoo, V. Thorsson and G. F. Cooper, "Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data," Pacific Symposium on Biocomputing, Vol 7, pp 498-509, 2002.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 498-509
    • Yoo, I.C.1    Thorsson, V.2    Cooper, G.F.3
  • 8
    • 0031935932 scopus 로고    scopus 로고
    • Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems
    • P. Smolen, D. A. Baxter and J. H. Byme, "Frequency selectivity, multistability, and oscillations emerge from models of genetic regulatory systems," American Journal of Physiology, Vol 274, pp C531-C542, 1998.
    • (1998) American Journal of Physiology , vol.274
    • Smolen, P.1    Baxter, D.A.2    Byme, J.H.3
  • 10
    • 84949748343 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data using differential equations
    • M. de Hoon, S. Imoto and S. Miyano, "Inferring gene regulatory networks from time-ordered gene expression data using differential equations," Discovery Science, pp 267-274, 2002.
    • (2002) Discovery Science , pp. 267-274
    • de Hoon, M.1    Imoto, S.2    Miyano, S.3
  • 12
    • 0034791625 scopus 로고    scopus 로고
    • Modeling genetic regulatory dynamics in neural development
    • M. Wahde and J. Hertz, "Modeling genetic regulatory dynamics in neural development", Journal on Computational Biology, Vol 8, pp 429-442, 2001
    • (2001) Journal on Computational Biology , vol.8 , pp. 429-442
    • Wahde, M.1    Hertz, J.2
  • 15
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • H. de Jong, "Modeling and simulation of genetic regulatory systems: a literature review," Journal on Computational Biology, Vol 9, pp 67-103, 2002.
    • (2002) Journal on Computational Biology , vol.9 , pp. 67-103
    • de Jong, H.1
  • 16
    • 0004158155 scopus 로고    scopus 로고
    • Modelling Gene Expression Data using Dynamic Bayesian Networks,
    • Technical Report, Computer Science Division, University of California, Berkeley, CA
    • K. Murphy and S. Mian, "Modelling Gene Expression Data using Dynamic Bayesian Networks," Technical Report, Computer Science Division, University of California, Berkeley, CA, 1999.
    • (1999)
    • Murphy, K.1    Mian, S.2
  • 17
    • 0003846041 scopus 로고
    • A Tutorial on learning Bayesian networks
    • Technical Report MSR-TR-95-06, Microsoft Research, Redmond, WA
    • D. Heckerman, "A Tutorial on learning Bayesian networks", Technical Report MSR-TR-95-06, Microsoft Research, Redmond, WA, 1995.
    • (1995)
    • Heckerman, D.1
  • 23
    • 4644238174 scopus 로고    scopus 로고
    • Reconstructing Genetic Networks From Time Ordered Gene Expression Data Using Bayesian Method With Global Search Algorithm
    • S. C. Wang, "Reconstructing Genetic Networks From Time Ordered Gene Expression Data Using Bayesian Method With Global Search Algorithm", Journal Of Bioinformatics And Computational Biology, Vol. 2, No. 3, pp 441-458, 2004.
    • (2004) Journal Of Bioinformatics And Computational Biology , vol.2 , Issue.3 , pp. 441-458
    • Wang, S.C.1
  • 24
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • J. L. DeRisi, V. R. Iyer and P. O. Brown, "Exploring the metabolic and genetic control of gene expression on a genomic scale," Science, Vol 278, pp 680-686, 1997.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 25
    • 0010850241 scopus 로고    scopus 로고
    • Statistical issues in reverse engineering of gene regulatory networks
    • J. Hertz, "Statistical issues in reverse engineering of gene regulatory networks", Pacific Symposium on Biocomputing, 1998.
    • (1998) Pacific Symposium on Biocomputing
    • Hertz, J.1
  • 26
    • 50249148834 scopus 로고    scopus 로고
    • is available on the internet at
    • The complete dataset is available on the internet at http://cmgm. stanford.edu/pbrown/explore/array.txt
    • The complete dataset


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.