메뉴 건너뛰기




Volumn , Issue , 2011, Pages 236-243

Information theoretic dynamic Bayesian network approach for reconstructing genetic networks

Author keywords

Dynamic Bayesian network; Gene regulatory network; Information theory

Indexed keywords

BIOLOGICAL DOMAIN; COMPLEX BIOLOGICAL SYSTEMS; CONDITIONAL INDEPENDENCES; DYNAMIC BAYESIAN NETWORK; GENE EXPRESSION DATA; GENE REGULATORY NETWORK; GENE REGULATORY NETWORKS; GENETIC INTERACTION; GENETIC NETWORKS; MUTUAL INFORMATIONS; PERFORMANCE MEASURE; REGULATORY RELATIONSHIPS; SIMULATION STUDIES; SYNTHETIC DATA; YEAST CELL CYCLES;

EID: 79958136743     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.2316/P.2011.717-079     Document Type: Conference Paper
Times cited : (11)

References (31)
  • 1
    • 0036843965 scopus 로고    scopus 로고
    • Gene networks: How to put the function in genomics
    • November
    • Paul Brazhnik, Alberto de la Fuente, and Pedro Mendes (2002) "Gene networks: how to put the function in genomics", TRENDS in Biotechnology Vol.20 No.11 November.
    • (2002) TRENDS in Biotechnology , vol.20 , Issue.11
    • Brazhnik, P.1    De La Fuente, A.2    Mendes, P.3
  • 2
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Hawaii
    • Akutsu, T., S. Miyano, et al. (1999), "Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model", Pacific Symposium on Biocomputing 4, Hawaii.
    • (1999) Pacific Symposium on Biocomputing , vol.4
    • Akutsu, T.1    Miyano, S.2
  • 3
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang, Y. H., S. Dudoit, et al. (2002). "Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation." Nucleic Acids Res 30(4): e15.
    • (2002) Nucleic Acids Res , vol.30 , Issue.4
    • Yang, Y.H.1    Dudoit, S.2
  • 4
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, and Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18: 261-274, 2002. (Pubitemid 34183104)
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 6
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'Haeseleer, P., S. Liang, et al. (2000), "Genetic network inference: from co-expression clustering to reverse engineering." Bioinformatics 16(8): 707-26.
    • (2000) Bioinformatics , vol.16 , Issue.8 , pp. 707-726
    • D'Haeseleer, P.1    Liang, S.2
  • 8
    • 27844482652 scopus 로고    scopus 로고
    • Estimating genomic coexpression networks using first order conditional independence
    • Magwene, P. M. and J. Kim (2004). "Estimating genomic coexpression networks using first order conditional independence." Genome Biol 5(12): R100.
    • (2004) Genome Biol , vol.5 , Issue.12
    • Magwene, P.M.1    Kim, J.2
  • 9
    • 0034570871 scopus 로고    scopus 로고
    • Correspondence analysis of genes and tissue types and finding genetic links from microarray data
    • Kishino, H. and P. J. Waddell (2000), "Correspondence analysis of genes and tissue types and finding genetic links from microarray data." Genome Inform Ser Workshop Genome Inform 11: 83-95.
    • (2000) Genome Inform Ser Workshop Genome Inform , vol.11 , pp. 83-95
    • Kishino, H.1    Waddell, P.J.2
  • 10
    • 0034828640 scopus 로고    scopus 로고
    • In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae
    • DOI 10.1046/j.1432-1327.2001.02304.x
    • Martins, A. M., P. Mendes, et al. (2001). "In situ kinetic analysis of glyoxalase I and glyoxalase II in Saccharomyces cerevisiae." Eur J Biochem 268(14): 3930-6. (Pubitemid 32868604)
    • (2001) European Journal of Biochemistry , vol.268 , Issue.14 , pp. 3930-3936
    • Martins, A.M.1    Mendes, P.2    Cordeiro, C.3    Freire, A.P.4
  • 11
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P, Morganella S, Ceccarelli M: TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC-Bioinformatics 2010.
    • (2010) BMC-bioinformatics
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 13
    • 77953891990 scopus 로고    scopus 로고
    • A novel gene network inference algorithm using predictive minimum description length approach
    • V. Chaitankar, P. Ghosh, E. J. Perkins, P. Gong, Y. Deng and C. Zhang, "A novel gene network inference algorithm using predictive minimum description length approach," BMC Systems Biology 2010, 4(Suppl 1):S7
    • (2010) BMC Systems Biology , vol.4 , Issue.SUPPL. 1
    • Chaitankar, V.1    Ghosh, P.2    Perkins, E.J.3    Gong, P.4    Deng, Y.5    Zhang, C.6
  • 15
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D: Using Bayesian networks to analyze expression data. J Comp Biol 2000, 7:601-620.
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 19
    • 33750071718 scopus 로고    scopus 로고
    • A scoring function for learning Bayesian networks based on mutual information and conditional independence tests
    • 12/1/2006
    • Luis M. de Campos, A Scoring Function for Learning Bayesian Networks based on Mutual Information and Conditional Independence Tests, The Journal of Machine Learning Research, 7, p.2149-2187, 12/1/2006.
    • The Journal of Machine Learning Research , vol.7 , pp. 2149-2187
    • De Campos, L.M.1
  • 20
    • 78449303632 scopus 로고    scopus 로고
    • Modeling multiple time units delayed gene regulatory network using dynamic Bayesian network
    • Xing ZZ, Wu D: Modeling Multiple Time Units Delayed Gene Regulatory Network Using Dynamic Bayesian Network. ICDM Workshops 2006, 190-195.
    • ICDM Workshops 2006 , pp. 190-195
    • Xing, Z.Z.1    Wu, D.2
  • 23
    • 32344436715 scopus 로고    scopus 로고
    • Optimizing time series discretization for knowledge discovery
    • KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • Mörchen, F., Ultsch, A.: Optimizing Time Series Discretization for Knowledge Discovery, Grossman, R.L., Bayardo, R., Bennet, K., Vaidya, J. (Eds), In Proceedings The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, (2005), pp. 660-665 ACM Digital Library. (Pubitemid 43218336)
    • (2005) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 660-665
    • Morchen, F.1    Ultsch, A.2
  • 24
  • 26
    • 33644687212 scopus 로고    scopus 로고
    • Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression
    • Sugimoto N, Iba H: Inference of gene regulatory networks by means of dynamic differential bayesian networks and nonparametric regression. Genome Informatics 2004, 15(2):121-130.
    • (2004) Genome Informatics , vol.15 , Issue.2 , pp. 121-130
    • Sugimoto, N.1    Iba, H.2
  • 27
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • DOI 10.1016/j.biosystems.2004.03.004, PII S0303264704000383
    • Kim, S., Imoto, S., and Miyano, S., Dynamic bayesian network and nonparamtric regression for nonlinear modeling of gene networks from time series gene expression data, Biosystems, 75:57-65, 2004. (Pubitemid 38887551)
    • (2004) BioSystems , vol.75 , Issue.1-3 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 29
    • 44849118743 scopus 로고    scopus 로고
    • Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering
    • DOI 10.1101/gr.073601.107
    • Della Gatta, G., Bansal, M., Ambesi-Impiombato, A., Antonini, D., Missero, C., and di Bernardo, D. (2008). Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res. 18, 939-948. (Pubitemid 351793066)
    • (2008) Genome Research , vol.18 , Issue.6 , pp. 939-948
    • Gatta, G.D.1    Bansal, M.2    Ambesi-Impiombato, A.3    Antonini, D.4    Missero, C.5    Di Bernardo, D.6
  • 30
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • DOI 10.1093/bioinformatics/bth448
    • Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., and Jarvis, E.D. (2004). Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594-3603. (Pubitemid 40136795)
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.